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ABSTRACT
Digital music has experienced a quite fascinating transfor-
mation during the past decades. Thousands of people share
or distribute their music collections on the Internet, result-
ing in an explosive increase of information and more user
dependence on automatic recommender systems. Though
there are many techniques such as collaborative filtering,
most approaches focus mainly on users’ global behaviors,
neglecting local actions and the specific properties of mu-
sic. In this paper, we propose a simple and effective local
implicit feedback model mining users’ local preferences to
get better recommendation performance in both rating and
ranking prediction. Moreover, we design an efficient train-
ing algorithm to speed up the updating procedure, and give
a method to find the most appropriate time granularity to
assist the performance. We conduct various experiments
to evaluate the performance of this model, which show that
it outperforms baseline model significantly. Integration with
existing temporal models achieves a great improvement com-
pared to the reported best single model for Yahoo! Music.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Information Filtering

Keywords
Collaborative Filtering, Recommender System, Local Im-
plicit Feedback, Efficient Training

1. INTRODUCTION
During the past decades, music has experienced a quite

fascinating transformation since expensive records and CDs
are replaced by enjoying a lot of music free online. People
could ask music store staff or just select from existing records
to get what they wanted in the past, while nowadays they
can surf on the Internet for music service, and turn to an
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automatic recommender system for a recommendation as
the amount of music available expands explosively.

There are many approaches to music recommendation,
such as Collaborative Filtering (CF)[12], which has been
widely used and proved to be quite effective in handling
users’ preferences. Latent factor models, like matrix factor-
ization (MF), and neighborhood models are two canonical
approaches in CF to capture users’ interests. MF, or sin-
gular value decomposition, maps users and items into the
same low-dimension space, maintaining vectors of items and
users. MF predicts a user’s rating on an item through the
inner product of two vectors. On the other hand, neigh-
borhood models, put more emphasis on detecting the sim-
ilarities and correlations between users or items, and make
prediction based on observed information. Besides, there are
other techniques for recommendation, such as graph-based
models [26], and content-based approaches[8].

Though effective in maintaining users’ overall preferences,
many CF methods concentrate more on users’ global inter-
ests. Such information might be enough to capture users’
preferences in some cases, such as recommending academic
papers or movies. However, music recommendation differs
from those in several ways1. Firstly, music has a large item
space and a low consumption time, where each song receives
attention for a relatively short time. Secondly, a person can
listen to songs in many situations, such as working, jog-
ging or resting. However, he or she cannot read papers or
watch movies all the time. Finally, people often consume
music continually. That is, a user’s behaviors in the next
time interval are likely to be consistent with his/her recent
behaviors.

Many traditional CF approaches focus on users’ global in-
terests that stay stable for a long time. They do not take the
local consistent behaviors into full consideration[18]. That
is, things which have happened just now or very recently are
likely to influence users’ decisions in the near future. We call
these local preferences. For example, John might suddenly
change his favorite Jazz to light music just because he was
going to sleep. Or, a person might be blue and turn to some
brooding tracks due to a week of rainy days. Such local
information is often neglected and not captured. However,
better performance may be achieved if local behaviors are
considered. In this paper, we propose a simple and effective
local implicit feedback model. We also design an efficien-
t training algorithm to speed up the training. Our main
contributions are as follows:

1http://recsys.acm.org/2011/tutorials.shtml, by Oscar Cel-
ma and Paul Lamere



• Local Implicit Feedback Model We are the first
to propose a local implicit feedback model. A combi-
nation of local and global information, represented by
implicit feedback, can capture users’ stable and local
changing preferences well.

• Efficient Training AlgorithmDue to the large amo-
unt of data to be processed and the high cost, we design
an efficient training algorithm. It greatly decreases the
complexity when using the classical stochastic gradient
descent method.

• Time Granularity We verify our local model by test-
ing with different time granularties, in order to get
the most appropriate granularity to maximize perfor-
mance. We also propose a method to find the optimal
time granularity.

Experiments conducted on three different datasets using
two evaluation metrics show that our local model outper-
forms baselines in capturing users’ local preferences in both
rating and ranking prediction. We also show that our local
model is to some extent complementary to other time-aware
models. We combine our model with the best single model
reported on Yahoo! Music, which achieves an RMSE de-
crease from 22.346 to 21.879.
The remainder of this paper is organized as follows. In

Section 2, we present our local implicit feedback model. Our
efficient training algorithm is described in Section 3, and
experiments are discussed in Section 4. Related work is in
Section 5. We conclude our work and point out some future
directions in Section 6.

2. LOCAL IMPLICIT FEEDBACK MODEL
In this section, we present our local implicit feedback mod-

el that extracts users’ local preferences, and also present the
ranking approach we used. To demonstrate that this model
is complementary to time-aware models, we integrate our
model with some temporal approaches.

2.1 Local Preferences
Local user preferences, as stated above, are mainly used

to capture user’s varying behaviors in a very local time pe-
riod. That is, his/her actions during current time interval
might have effects on his/her decisions in the next few min-
utes. His/her actions in the next time period tend to be
consistent with his/her recent behaviors, but might be dif-
ferent from his/her global behaviors. For example, if Alice
is a music lover keen on Hip Hop and Rock, but something
unfortunate has happened so she is depressed at present,
then it is likely for her to turn to some sad songs. It is
possible that people might change their accustomed habits
temporarily and return to them after a short time. Habits
can also change quite gradually, and those changes might
persist for a long time. Transient events affect users’ pref-
erences during a short time period, like a week, a day, an
hour or even a minute. On one hand, a user’s interests
might be affected by his/her established preferences; on the
other hand, they could be also influenced by a very local
event, like a new record release or a song that rises to fame
overnight. Moreover, such very local and transient incidents,
tend to be more determined by the characteristic of music
that people’s consumption is always continuous. However,
such contextual information might be unavailable to recom-

Representations Descriptions
U ,I user set, item set
u,i user u, item i

pu,qi K dimension vectors of user u and item i

N(u) the set of items rated by user u
N(u, t) the set of items rated by

user u during time period t
bu, bi users/item bias
µ overall average ratings

bias bu, bi and µ
φi global predictive influence of item i

a K dimension vector
ϕj local predictive influence of item j

a K dimension vector

Table 1: Commonly Used Notations

mender systems. To solve this problem, we propose to use
users’ local behaviors to model their local preferences.

2.2 Local Implicit Feedback
User local preferences are characterized by using users’

implicit feedback in a short time period. The implicit feed-
back is represented by users’ behaviors in history, i.e items
he/she rated. Through rated/unrated binary information,
the implicit feedback model is provided with a non-explicit
ability to capture users’ potential and global interests. This
model was originally proposed by Koren[12], whose formu-
lation was:

r̂ui = µ+ bu + bi + pu
T
qi + (|N(u)|− 1

2

∑

j∈N(u)

φj)
T
qi (1)

Table 1 gives some commonly used notation for our work.
Here, given two items i and j, φj is an indication of user
u’s preference, and will be high if j is predictive on item i.
Based on MF and implicit feedback, this model focuses more
on users’ global behaviors. Since implicit feedback works
well in characterizing users’ global and potential interests,
we implement our local preferences idea based on it. Our
local implicit feedback model is formulated as this:

r̂ui(t) = bu + bi +

(

pu +

∑
j∈N(u) φj
√
|N(u)|

+

∑
j∈N(u,t) ϕj
√
|N(u, t)|

)T

qi

(2)
Here, user’ local preferences are characterized by using their
very localized rating history represented by N(u, t), which
we call Local Implicit Feedback. By using users’ implicit
information during a localized time interval, we assume that
user behaviors during that period correlate to their current
decisions. The Time Granularity is defined as the length
of the local time interval, which can be a minute, an hour, a
day and even a week. A period larger than a week is beyond
what we define as a local time period. For example, if we set
the time granularity as day, it means a user’s ratings during
the current day will be picked as his/her local implicit feed-
back. The most appropriate time granularity that directly
and accurately reflects users’ local interests, can be discov-
ered by testing different granularity settings. However, it
could be observed that due to differences in various music
datasets, the optimal time granularity might be in different
datasets. If there are few items rated during a time peri-
od, then that granularity might have little ability to capture
users’ local behaviors. Having implemented our local mod-



el with classical SVD++[12] , we could characterize users’
global interests with the global implicit feedback, and local
preferences by using the local implicit feedback model. We
present detailed statistics in the experimental part.

2.3 Temporal Dynamics Integration
To investigate whether our implicit feedback model can

further improve the performance of the existing temporal
models, we integrate our model with those existing approach-
es. Some classical temporal models have already been pro-
posed, such as [13, 5]. Incorporating those time-aware mod-
els with our local implicit feedback into an integrated model,
we get the following formulation.

r̂ui = µ+ bi + bi(t) + bu + bu(t) + pu(t)
T
qi(t)

+

(∑
j∈N(u) φj
√
|N(u)|

+

∑
j∈N(u,t) ϕj
√
|N(u, t)|

)T

qi(t) (3)

pu(t), qi(t) are used to denote the corresponding pu and qi
that change over time. This integration model is used to
test that our implicit feedback model has an unique ability
to discover some unheeded information.

2.4 Ranking Optimization
There are two kinds of prediction tasks, rate prediction

and top K ranking recommendation. Rate prediction is a
general recommendation orientation [13], and ranking based
approaches [17] are popularly used on datasets like Pandora2

and Last.fm. Both rate prediction and ranking task will be
studied in our paper.
To recommend the top K items, we have to rank items over

the r̂ui that directly reflects users’ interests. Optimization of
ranking order is needed to get the updated parameters. Most
traditional ranking approaches maximize the area under the
ROC curve as follows:

AUC(u) :=
1

|N(u)+||I \N(u)+|
∑

i∈N(u)+

∑

j∈I\N(u)+

δ(r̂ui−r̂uj)

where N(u)+ is the set of users’ liked items in N(u). It
means user u prefers items in N(u)+ over I \ N(u)+. To
optimize the rank order, we first define a hard 0-1 function
as this:

δ(x) =

{
1 x > 0
0 otherwise

(4)

δ(x) is non-differentiable, thus we can replace it with surro-
gate functions −l(x). One widely-used surrogate function is
logistic loss, which is adopted later in our ranking approach-
es.

l(x) = ln(1 + e
−x) (5)

3. EFFICIENT TRAINING ALGORITHM
In this section, we present our efficient training algorithm

that is used to speed up training in our experiments, after
which we provide a complexity analysis.

3.1 Traditional Updating
We can characterize implicit feedback models described in

Equation 1 and 2 with the following general implicit feed-

2http://www.pandora.com

back model:

r̂u,i = bias+



pu +
∑

j∈Γ(u)

αjψj




T

qi (6)

Here, Γ(u) stands for implicit feedback information that
could include global implicit feedback described in Equa-
tion 1 as well as local feedback in Equation 2. ψj is the
implicit feedback term, and could be φj in global implicit
feedback or ϕj in local model. Meanwhile, αj could be giv-
en the value βj = 1√

|N(u)|
for global implicit feedback terms,

and γj = 1√
|N(u,t)|

for local terms.

The traditional stochastic gradient descent algorithm [14]
updates the above model as follows:

pu = pu + η (êqi − λ1pu) (7)

qi = qi + η (êpu − λ2qi) (8)

ψj = ψj + η (êαjqi − λ3ψj) , ∀αj 6= 0, αj ∈ Γ(u) (9)

We focus on pu, qi and ψj ; the rules for updating bias are
omitted. The λs are regularization parameters. η is the
learning rate, and ê is the difference between actual and
predicted ratings. Obviously, the cost of updating ψj is
linearly related to the number of non-zero entries in Γ(u), i.e.
proportional to the number of items the users have rated.

3.2 Efficient Training
The traditional updating procedure becomes expensive

when the average number of items rated by users is large.
For example, last.fm customers have listened to 3996 songs
on average, so their updates would be at a great cost. When
we add more implicit feedback information, that problem be-
comes more prominent. Thus, some optimization methods
are needed.

Before turning to our efficient algorithm, let us do some
observations on the general model first. Define a derived
user implicit feedback factor pim as follows:

p
im =

∑

j

αjψj (10)

The updating rule of ψj after one step is like this (omitting
regularization terms):

∆ψj = ηêαjqi (11)

Difference in pim before and after updating is as follows:

∆pim = ηê(
∑

j

αj
2)qi (12)

With more care, we find that there exists a relation between
∆pim and ∆ψj , which is formulated as follows:

∆ψj =
αj∑
k αk

2
∆pim (13)

Therefore, to get new ∆pim, we do not need to update each
ψj . For logistic loss or square loss, those update rules and
relations also remain valid. However, if the L2 regularization
term is added, update rules changes to this:

∆ψj = η(êαjqi − λψj) (14)

Corresponding differences in pim change similarly. Those
changes do not affect the use of this relation, since the reg-
ularization term is usually small.
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Figure 1: Comparison of Efficient Training Algorithm of Global and Local Implicit Feedback Models

This general relation is used to speed up the stochastic
gradient descent training, and can also handle all variants of
implicit feedback models, such as SVD++ in Equation 1 and
local implicit feedback in Equation 2. We develop an efficient
algorithm for our local implicit feedback model described in
Equation 2 by using the general relation in Equation 13. The
detailed algorithm is presented as Algorithm 1. The general
idea is that we do not need to update each φj or ϕj . Instead,
we directly update pim and pim,t, and return changes to φj

and ϕj using the relation in Equation 13. Figure 1 presents
an intuitive comparison of local and global implicit feedback
models using the efficient training algorithm. It is obvious
that efficient training of SVD++ is just a special case of
Algorithm 1.

Algorithm 1 Efficient Training Algorithm for Training with
Local Implicit Feedback

for all user u do

pim ←∑
j∈N(u) βjφj

pold ← pim

for all time intervals of user u do

pim,t ←∑
j∈N(u,t) γjϕj

pold,t ← pim,t

for all training examples in N(u, t) do
update relevant parameters
replace

∑
j γjϕj with pim,t,

∑
j βjφj with pim

update pim,t and pim directly
end for

for all i, γj 6= 0 do

ϕj ← ϕj +
γj∑
k γj

2 (p
im,t − pold,t)

end for

end for

for all i, βj 6= 0 do

φj ← φj +
βj∑
k βj

2 (p
im − pold)

end for

end for

3.3 Complexity Analysis
Compared with classical stochastic gradient descent algo-

rithm, our efficient training algorithm achieves a significant-
ly reduction in time complexity. Algorithm 1 has a time
complexity of O(NeK + UR) for general implicit feedback
form, i.e. O(NeK), usually K > 1. Ne stands for all non-
zero entries, and K refers to the latent dimension. U is the
number of users, while R represents the average number of
items rated by a user. The cost of updating pim for all users
amounts to the product of dimension and all non-zero en-

tries of user-item rating samples. While the complexity of
updating all ψj for all users is approximately the number of
non-zero entries for all users. Thus, the overall complexity
is the product of all non-zero entries and dimension. Com-
pared to the cost of updating pim, this can be neglected.
However, since original stochastic gradient descent needs to
update ψj whenever you get a updated pim, its complexity

is O(NeKR). Obviously, ξ = O(NeKR)
O(NeK)

= O(R). That is,

our training algorithm performs R times faster than original
one, where R is larger than 100 in general.

4. EXPERIMENT
In this section, we present our experimental results to e-

valuate the proposed local implicit feedback models. There
are several questions we want to answer.

• Can this local implicit feedback model perform better
than a model with only global implicit feedback?

• Which time granularity is the most powerful in reflect-
ing users’ local changing preferences? Could we give
some methods to find a relatively optimal time granu-
larity?

• Could our local implicit feedback model extract user-
s’ potential preferences that complement the existing
time-aware models?

4.1 Experimental Setup
Our experiments are conducted on three datasets, Ya-

hoo! Music3, Last.fm4, and Douban Music5. Yahoo! Mu-
sic dataset is used by 2011 KDD Cup Workshop track 1.
Last.fm is a famous personalized music website. We use the
dataset provided by Celma et al.[4]. Douban Music is the
largest Chinese music recommendation website. We crawl
the dataset from users’ recent listening history along with
time stamps. Table 2 is a statistical comparison for each
dataset. Here, STG stands for the Smallest Time Granu-
larity provided by the datasets or available, and AIR is the
Average Items Rated per user. Traditional rating predic-
tion is performed on Yahoo! Music, and is evaluated with
RMSE(root mean square error). We train local models on
the provided training set and test them on the validation
set. Personalized ranking is implemented on the remaining
Last.fm and Douban Music datasets. We follow the top-N
recommendation evaluation metric proposed by Cremonsei

3http://kddcup.yahoo.com
4http://last.fm
5http://music.douban.com



Dataset User Item Ratings STG AIR
Yahoo! Music 1000990 624961 253M Min 252

Last.fm 1001 471997 3.95M Min 3996
Douban Music 22454 497744 2.94M Day 88

Table 2: Comparison of DataSets

et al.[6]. First, we randomly 4 : 1 split the original training
sets into training and validation sets. Then we get our final
testing sets by sampling 1000 not rated items for each high
rating example in the validation sets. Recall@K is used as
evaluation metric like this:

Recall@K =
H

T
(15)

For each positive example with 1000 negative samples, it is
called a hit if the positive example is ranked in the top K
among the 1001 items. H is the overall hit number. T is
the total number of items that users like in the test set.

4.2 Performance Comparison
We conduct several kinds of experiments on different data-

sets to evaluate the performances of purely global implicit
feedback model and our local implicit feedback models.

4.2.1 Model Names
To fully illustrate the local models later, detailed descrip-

tions of relevant models referred to Equation 2 are given as
follows:

• IMFB: is for an implicit feedback model based on basic
MF and global information, i.e the classical SVD++.

• MLIF: is minute local implicit feedback, regarding a
minute’s ratings as local implicit information.

• HLIF: is hour local implicit feedback model, using an
hour’ ratings as local implicit information.

• DLIF: is day local implicit feedback, treating a day’s
ratings as local information.

• WLIF: is week local implicit feedback model, taking a
week’s ratings as local information.

The MLIF, HLIF, DLIF and WLIF models are all imple-
mented with IMFB, a combination of global and local im-
plicit feedback information. IMFB is regarded as a baseline.
The five models are all trained with our efficient training
algorithm, and are built based on the time granularity avail-
able in the corresponding dataset. Through comparisons we
set the latent factor as 100 in our experiments.

4.2.2 RMSE Performance on Yahoo! Music
Since Yahoo! Music is a rate prediction task, RMSE is

adopted as our evaluation metric. It is appropriate to this
specific dataset. The detailed RMSE results of the five mod-
els are in Figure 2. From the RMSE results of each of the
models with different time granularity, we can get some basic
observations. Firstly, we find that our proposed approach-
es do give significant improvements in this rate prediction
task. MLIF, which achieves the best performance in terms
of accuracy, attains an RMSE of 22.673. While our baseline
model IMFB gives 23.233. It can be also observed that the
performances of the day and week models are similar, with
RMSE of 22.922 and 22.972 respectively. No matter what

IMFB MLIF HLIF DLIF WLIF
22.5
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22.8

22.9
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R
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Figure 2: RMSE of Local Models on Yahoo! Music

Models,Recall@K 5 10 15 20
IMFB 0.173 0.240 0.304 0.335
MLIF 0.175 0.250 0.305 0.339
HLIF 0.220 0.288 0.338 0.373
DLIF 0.224 0.301 0.345 0.383

WLIF 0.224 0.297 0.341 0.380

Table 3: Recall of Localized Models on Last.fm

time interval is used, a local model al ways outperforms
the baseline, though degrees of improvement are different.
Thus, we can conclude that a local implicit feedback model
works better than a purely global model. Secondly, it seems
possible that a smaller time granularity gives better perfor-
mance. That is, MLIF works better than DLIF, while DLIF
is superior to others except the minute model. However, it
might not be true on all datasets. The different performance
among various time granularity reflect different descriptions
of users’ local behaviors and we will discuss this in detail in
Section 4.3. We do not present the basic MF method here,
since it is generally inferior to SVD++[12].

4.2.3 Recall Performance on Last.fm
In this section, we report the performance of our local im-

plicit feedback models. From Table 2, the STG of Last.fm is
minute. Based on time granularity available, minute, hour,
day and week local implicit feedback models are constructed.
We give the comparison of the best local implicit feedback
against the global one in Figure 3. The detailed recall re-
sults of all models are shown in Table 3. It is evident that
our implicit feedback model achieves a significant improve-
ment over the baseline. Our localized model DLIF achieves
a recall of 0.383 when K = 20, which means an item that
a user likes has a probability of 38.3% to be ranked in the
top 20 in DLIF during a large sample collection (1001 item-
s). While the baseline gives a Recall@20 of 0.335. That
is, day local implicit feedback has a 14% improvement over
the baseline. Such big progress indicates that our model
does outperform a purely global model significantly. Table
3 shows detailed recall results for the local implicit feed-
back model. From Table 3, we know that compared to the
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Models,Recall@K 5 10 15 20
IMFB 0.520 0.640 0.705 0.746
DLIF 0.605 0.701 0.750 0.783

WLIF 0.602 0.697 0.739 0.780

Table 4: Recall of Localized Models on Douban

baseline, local implicit feedback models give improvemen-
t to different extents. Obviously, DLIF, HLIF and WLIF
give similar performance. HLIF and WLIF give Recall@20
of 0.373 and 0.380 respectively, and DLIF is a little higher
than either of them. Moreover, MLIF gives approximately
the performance of IMFB. With a recall@20 of 0.339, it is a
bit better than IMFB. The experiments show that our local
implicit feedback model can achieve significant improvement
over baseline on ranking task.

4.2.4 Recall Performance on Douban
This dataset is handled similarly to Last.fm, and shares

the same evaluation methodology with it. Experiments are
conducted on three models, IMFB, DLIF and WLIF. We
present our results on Douban Music as Table 4, and com-
parison curves as Figure 4. Figure 4 gives us an abstract
impression that a local implicit feedback model outperforms
IMFB. As anticipated, a local implicit feedback model gives
a consistent improvement in terms of top K precision from
Table 4. With a Recall@20 of 0.746 for IMFB, DLIF and
WLIF outperform it with 0.783 and 0.780 respectively. Such
improvement also can be observed from Recall@5, Recall@10
and Recall@15 in Table 4. Therefore, overall performances
show again that local implicit feedback models do work in
capturing users’ preferences that are neglected by a global
model.

4.3 Resolution of Time Granularity
In this part, we evaluate the performance of our local im-

plicit feedback models under different time granularity, and
propose an empirical standard to find the most appropriate
time granularity for each dataset. For convenience, define
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Figure 4: Recall@K of Localized and Baseline Mod-

els on Douban

ARP(u) as the set of time-adjacent rating pairs of user u,
and ARP as the union of all users’ ARP(u). Statistics are
done on the percentage of all ARP pairs which are catego-
rized into five groups by their time differences. Time gap
groups include: 0(No time difference6), [1M, 1H), [1H, 1D),
[1D, 1W ) and larger than 1 week. M, H, D, W refer to
minute, hour, day and week respectively. The results are
presented in Figure 5. The statistics is a direct reflection of
users’ behavior frequency distributions.

From statistics of Yahoo! Music in Figure 5(a), we find
that nearly 60% ARP pairs have no timestamp difference.
Recalling the results in Figure 2, we find the minute model
gives the best performance among all time granularity. This
can be explained by our statistics since minute is the small-

est granularity that contains sufficient information: 60% of
ARP pairs have no time difference, indicating that sufficient
feedback information can be obtained within a minute. Un-
der the condition of sufficient information, a smaller granu-
larity can lead to a better modeling of users’ behaviors.

In Last.fm, it appears that most ARP pairs lie in group
[1M, 1H). Using the day as time granularity allows us to
cover sufficient information. The results in Table 3 suggest
that day is the most proper time granularity, which achieves
the best Recall@20 of 0.383. This is consistent with our pre-
vious observation. In Douban, we can see that almost 75%
of ARP pairs have no difference with each other. The re-
sults in Table 4 show that day is the most appropriate. This
is also consistent with our previous observation since day is
the smallest time granularity with sufficient information.

Through comparison, we discover that the appropriate
time granularity depends more on the property of specific
dataset, and generally varies in different datasets. From the
experiment results, we observe that the most proper time
granularity is given by the smallest granularity that contains
sufficient information. The most appropriate time granular-
ity are minute, day and day on Yahoo! Music, Last.fm and
Douban respectively. Moreover, by analyzing statistics on

6This means there is no difference in timestamp, due to the
limitation of minimal timestamp available on dataset
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Figure 5: Statistics on Yahoo! Music, Last.fm and Douban Music

Models RMSE
Integrated.MF 22.346

Integrated.Minute.LIF 21.879

Table 5: RMSE Performance on Yahoo! Music

each dataset, we can choose the appropriate time granularity
using the empirical standard.

4.4 Integration with Temporal Dynamics
The experimental results presented in Section 4.2 show

that local implicit feedback performs well on music dataset-
s. Using a combination of global and local implicit feedback
information, our local implicit feedback models capture not
only their global interests, but also users’ local behaviors
that could be indicated through the local rating entries.
However, it can be argued that, even if our models cap-
tures users’ changing interests, it might be largely due to
some general influences of changes that existing time-aware
models could handle. To answer this question, we conduct a
comparison experiment to show that local model captures an
unique property of music that differs from properties mined
by existing time-aware models on the Yahoo! Music dataset.
Here, Integrated.MF stands for the model adopted in [5], the
reported best single model on Yahoo! Music, which contain-
s state-of-the-art temporal dynamics modeling approaches.
Integrated.Minute.LIF, represents the combination of a lo-
cal model and Integrated.MF referred to Equation 3. We
take the best local implicit feedback model on Yahoo! Mu-
sic here to integrate with Integrated.MF. That is, Integrat-
ed.Minute.LIF is a combination of local implicit feedback
(MLIF) and a state-of-the-art temporal approach. Results
are shown in Table 5. The combination gives a significan-
t improvement from 22.346 to 21.879, better than all local
models on Yahoo! Music dataset. Therefore, it can be con-
cluded that a local implicit feedback model is complemen-
tary to time-aware models, and combining it with the best
single model reported can provide better performance. In
conclusion, our proposed local model does have an unique
capability to discover users’ potential preferences from a d-
ifferent perspective.

5. RELATED WORK
Collaborative filtering has been an effective technique for

recommender systems during the past years. Compared
with content-based models [25], CF approaches do not nec-

essarily need any attributes of users/items. In general, CF
models are often adaptive and flexible since they learn from
the dynamically changing user feedback [16]. Neighborhood
based models [23, 21] and latent factor models [14] are two
canonical approaches to CF. Recently, context-aware mod-
els [1] are proposed to capture users’ behaviors on specific
context. Context-aware models always leverage users’ con-
text information such as mood [24], location [19], social re-
lationship [3] etc.. However, these contextual information
are often unavailable.

User implicit feedback plays an important role in informa-
tion retrieval and data mining applications[2, 11]. Due to
the limitations on obtaining explicit feedback (e.g. detailed
ratings), implicit feedback, has been paid much attention
[22] due to availablility. For some recommender system ap-
plications, users do not always return their explicit feedback
due to application limitations. Thus, implicit feedback can
be leveraged to improve the recommendation performance.
Hu et al. [10] studied CF implicit feedback datasets and
proposed to transform users’ implicit feedback into training
data in a preference-conference format. Koren [12] discov-
ered that incorporating implicit feedback into a neighbor-
hood integrated latent factor model (SVD++) could give
significant improvement. However, training with implicit
feedback becomes quite expensive in general recommender
systems, and is not well studied. G. Takacs proposed a spe-
cific unified approach of factor and neighbor based models
for large recommender systems[9], differing from our general
efficient training one.

Since users’ preferences generally change over time, rec-
ommender systems should capture both global and local
changing interests in order to provide more accurate rec-
ommendations. Temporal dynamic models distinguish user-
s/items from different time slots so as to maintain users’
changing preferences. Koren [13] proposed a time day bin
approach in capturing users’ fixed preferences during a time
period. Xiang et al.[26] designed a session-based temporal
graph and applied a personalized random walk on it. The
graph has three types of nodes for users, items, and user ses-
sions, and is used to capture users’ long term and short term
interests. Chen et al. [5] proposed a multi-resolution tem-
poral CF model that consists of time-dependent user/item
bias, latent factors, time-dependent neighborhood, and rat-
ing session to cope with Yahoo! Music recommendation.
Rendle et al. [20] proposed personalized Markov chains to-
gether with MF in capturing both sequential effects and long



term user-state, which focuses on influences of sequential ac-
tions on the next action. There are also other recommenda-
tion approaches involving temporal information in various
ways, such as decreasing weights for old data [7], and time-
dependent iterative prediction in a growing dataset[15].

6. CONCLUSION
In this paper, we propose a simple and effective local im-

plicit feedback model to mine users’ local interests. We also
design an efficient training algorithm to speed up the train-
ing procedure. Experiments conducted on three datasets
show that our local implicit feedback models significantly
outperform the global implicit feedback model, and have a
capability different from existing time-aware models in cap-
turing users’ changing preferences. Meanwhile, we observe
that the appropriate resolution changes on different dataset-
s, and also give an empirical standard to determine the most
appropriate time granularity. In the future, we plan to take
this further to extract personalized local implicit feedback
information and other localized properties.
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