
Informative Ensemble of Multi-Resolution Dynamic
Factorization Models

Tianqi Chen
∗

, Zhao Zheng, Qiuxia Lu, Xiao Jiang, Yuqiang Chen, Weinan Zhang
Kailong Chen and Yong Yu
Shanghai Jiao Tong University

800 Dongchuan Road, Shanghai 200240 China

{tqchen, zhengzhao,luqiuxia,jiangxiao,yuqiangchen,wnzhang,chenkl,yyu}@apex.sjtu.edu.cn

Nathan N. Liu
†

, Bin Cao, Luheng He and Qiang Yang
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong

{nliu,caobin,luhenghe,qyang}@cse.ust.hk

ABSTRACT
The Yahoo! music rating data set in KDD-Cup 2011 raises a num-
ber of interesting challenges: (1) It contains significantly larger
number of users/items than all existing benchmark data sets. (2)
The data covers a lengthy time period of more than 8 years. (3)
Both date and time information are available for both training and
test data. (4) The items form a natural hierarchy consisting of 4
types of items: genres, artists, albums and tracks. To capture the
rich temporal dynamics within the data set, we design a class of
time-aware hybrid matrix/tensor factorization models, which adopts
time series based parameterizations and models user/item drifting
behaviors at multiple time granularitys. We also incorporate the
taxonomical structure into the item parameters by introducing shar-
ing parameters between ancestors and descendants in the taxon-
omy. Finally, we have found that different types of models or pa-
rameter settings often work more(or less) effectively for users/items
with certain characteristics. To more effectively combine multiple
models, we design an informative ensemble learning framework,
which augments model predictions by an additional set of meta fea-
tures to represent the training instances for ensemble learning.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval—
Information Filtering

General Terms
Algorithms, Experimentation

Keywords
Collaborative Filtering, Recommender Systems

1. INTRODUCTION
Recommender systems have become an indispensable tool for

helping users tackle with information overload as new content (e.g.,
∗The two groups from Hong Kong University of Science and Tech-
nology and Shanghai Jiao Tong University have contributed equally
to the team’s solution, and the author ordering does not indicate dif-
ferences in contributions.
†Nathan N. Liu and Tianqi Chen are leaders of the team.

news, products) are growing at an explosive rate. Collaborative
filtering (CF) is one of the most promising technology for recom-
mender systems. It works by discovering the correlation between
users and items based on observed user preferences (i.e., ratings,
clicks, etc.) so that unobserved user preferences can be interpolated
from the observed ones. For example, the well known user based
algorithm first finds the similarities between users based on their
past ratings, then a target user’s rating on a new item can be pre-
dicted from the ratings on that item from other similar users, also
known as neighborhood. Thanks to the widely publicized Netflix
prize competition, there has been a surging interests on CF algo-
rithm design in the research community in recent years.

In contrast to the Netflix prize competition which deals with
movie domain, this year’s KDD-Cup[4] provides access to one of
the largest music ratings data set, which contains nearly 3 times
more ratings than the Netflix movie ratings data set. In addition to
the differences in data size, we also noted several other interesting
new challenges raised by the Yahoo! music data set:

• The data set spans a very long time period of more than 6,000
days and there are a significant number of users that have
been active in the system for multiple years. People’s tastes
in music is arguably much more diverse and unpredictable
than in movies due to the much larger number of choices
available. In the mean time, the popularity of genres and
artists is also fast changing. The effect of temporal dynamics
has to be carefully taken into account to cope with various
drifting and transient characteristics of users/items over such
a long period of time.

• Each rating in both the training and test data set is associ-
ated with both date and time information. While previous
work[7] has demonstrated the value of considering date in-
formation, there has been no previous work that jointly con-
siders both date and time information in a single model. In
the Netflix movie ratings systems, a user rarely rates movies
during multiple time periods within the same day. However,
as music services can be used by people through out a day, it
is actually quite common to observe multiple ratings at dif-
ferent times of the same day in the Yahoo! music ratings data
set. Intuitively, people’s mood can naturally change over the
day and people often prefer different types of music depend-
ing on his current context/status (e.g., at home vs. at work).

Therefore, considering time in addition to date as an addi-
tional context dimension can lead to more accurate modeling
of user behaviors as we will demonstrate.

• Unlike traditional data sets which contains a single set of ho-
mogeneous items, the Yahoo! music data set consists of 4
types of items: genres, artists, albums and tracks, which are
naturally linked together as a directed acyclic graph (DAG)
based on predefined taxonomical relations. Intuitively, a user’s
preference for a particular track can be highly influenced by
whether he likes the singer or the genre of the song. Simi-
larly, if a use hates a particular artist, he can hardly rate any
of his songs highly. To capture such correlated user prefer-
ence over linked items, we also design a downward parame-
ter sharing scheme such that the parameters of an item lower
in the taxonomy will depend on the parameters of its ances-
tors, but not vice versa.

• The data set contains huge number of items, which is nearly
30 times more than that of the Netflix data set. As a result,
although the number of ratings is much larger, the data spar-
sity is actually much more severe than the Netflix data set.
In the mean time, this also leads a user/item population with
highly diverse characteristics, which can be hardly served us-
ing a single model. As we will show, different models or
parameter settings peform differently on particular user/item
segments. To more flexibly fuse multiple models so as to
serve different user/item segments differently, we design an
informative ensemble learning strategy, which augments the
model predictions with an additional set of meta features
describing various user/item characteristics and then train a
nonlinear model to make predictions based on this represen-
tation.

To solve the problems, we have designed various kinds of mod-
els targeting different features of the data set. We also implement
a toolkit capable of handling large-scale data and implement dif-
ferent variants of model in one framework. Based on extensive
large scale experiments, we find that the incorporating date, time
and taxonomy information into the matrix factorization can lead to
huge improvement over the basic matrix factorization and the infor-
mative ensemble of a collection of model can further significantly
improve upon the best single model. Our final solution obtained an
RMSE of 21.2634 on the held out test set, which achieved the 3rd
place in Track 1 of KDD-Cup 2011.

2. PRELIMINARIES
In this section, we will give a concise overview of the matrix fac-

torization model, which forms the foundation of our KDD-CUP so-
lution. We will also describe some of its recent extensions specifi-
cally designed for collaborative filtering problems. Before formally
describing the models, we first define our notational conventions.
Suppose we have m users and n items. Generally, we use u, v to
denote users and i, j to denote items. Day and time indices are de-
noted by d and t respectively. The ratings are arranged in a m× n
matrix R = rui. In the matrix, some cells have values, the others
are empty. We use S to denote the set of (u, i) indices for which
ratings are observed.

2.1 Matrix Factorization for Collaborative Fil-
tering

Matrix factorization is one of the state of the art model for large
scale collaborative filtering as having been demonstrated by its suc-
cess in the Netflix prize competition[8]. In its basic form, every

user u and item i is associated with a vector pu, qi ∈ Rk and a
scalar au and bi respectively. The vectors pu and qi are generally
referred to as the user and item factors where as au and bi are re-
ferred to as the user and item biases. Under this model, user u’s
rating on item i is predicted via the following equation:

r̂ui = f(pTu qi + au + bi) (1)

where the function f(·) is a warping function that can map the a real
value to a certain range [10]. In this work, we adopt the sigmoid
function defined below:

f(x) =
1

1 + exp(−x)
(2)

which can enforce that the predicted ratings ranges between 0 and
1, which can be then be easily mapped to the Yahoo! music data
set’s rating scale by multiplication with 100.

The model parameters are generally learnt by solving the follow-
ing regularized least squares problem:

min
a∗,b∗,p∗,q∗

∑
(u,i)∈K(rui − f(pTu qi + au + bi))

2 +

λ1(
∑
u ||pu||

2 +
∑
i ||qi||

2) + λ2(||a||2 + ||b||2).(3)

Here the constant λ1 and λ2 are parameters guarding the extent of
regularization. When we choose not to regularize bias terms, we
can set λ2 to 0.

2.2 Integrate Neighborhood Information
The traditional neighborhood methods focus on computing the

relationships between items or, alternatively, users. They are most
effective at detecting very localized relationships and base predic-
tions on a few very similar neighbors, but it may fall short when
there is no or few observed ratings within the neighborhood of lim-
ited size. In contrast, the latent factor model is effective at captur-
ing global information and have much better generalization capa-
bility due to its capability to more abstractly represent user/iems
via learnable parameters.

The neighborhood based prediction model can be easily com-
bined with the matrix factorization model additively:

r̂ui = f
(
au+bi+p

T
u qi+|N(u, i; k)|−

1
2

∑
j∈N(u,i;k)

wij(ruj−r̄u)
)

(4)
Here the set N(u, i; k) consists of all the items that are selected as
k-nearest neighbors of the item i and have been rated by the user u.
Traditional neighborhood methods rely on some arbitrary similarity
metric such as Cosine or Pearson Correlation Coefficient to define
the parameters wij . In this work, we treat wij as free parameters
which are learnt together along with the matrix factorization model
parameters as first suggested by [1][6]. During computation, we
only need to store and update the parameters for k-nearest neigh-
bors of each item instead of all the item pairs, which results in k×n
parameters where n is number of items. The k-nearest neighbors
are precomputed using a map-reduce cluster(Pearson Coefficient as
metric). Then we precompute N(u, i; k) on a single machine for
each rating record. With the precomputed information, we can train
the model using method described in Section 6 efficiently.

2.3 Utilizing Implicit Feedback
In general, implicit feedbacks can refer to any types of actions

users performed on items other than ratings. Implicit feedback is
a less precise indicator of user preferences but is generally more
abundant and easier to obtain. For music recommendation, ideally
the user’s listening history such as how many times he listened to a
song can be a very useful type of implicit feedback. Unfortunately,

such information is not available in the KDD-Cup data set. Instead,
we consider another type of simple implicit feedback: whether a
user rated an item or not. This type of implicit feedback allows us to
utilize the test data, which consists of no ratings, in addition to the
training data. To incorporate the information of implicit feedbacks,
we adjust our estimation function as follows:

r̂ui = f
(
au + bi + (pTu + |R(u)|−

1
2

∑
j∈R(u)

yTj)qi
)

(5)

where R(u) denote the set of items that are rated by the user u.
Every item j is assigned with a feature vector yj with the same di-
mension k as the user/item factors pu, qi. |R(u)|−

1
2 is an empirical

parameter for normalization of implicit feedbacks.
Equation 5 shows implicit feedback extension to basic matrix

factorization. We point out that the extension to other models(e.g.
neighborhood model) is straightforward. In the rest part of the
paper, we will also show extensions over basic matrix factorization
for simplification.

We also use another kind of implicit feedback called “local im-
plicit feedback”. We don’t include all the items rated by user into
R(u). Instead, we restrict R(u) to the set of items user rate within
current rating minute, excluding current item to be predicted. Due
to the strong locality of the data set, the items user rated in nearby
time(in same session) will provide more information than items
user rated long time ago. The set of local implicit feedback is small
so that it’s possible to be directly optimized by stochastic gradient
descend without using the speedup tricks for implicit feedback. It
also yields similar performance gain as implicit feedback.

2.4 Model Learning
A very effective algorithm for solving the above least squares

problem on large scale data set is the stochastic gradient descent
algorithm, which simply randomly sweeps through the training rat-
ings in S one by one and takes a small gradient descent step on the
relevant parameters along the direction that minimizes the error on
each rating. We define eui = rui − r̂ui when f(x) = x. When
f(x) = sigmoid(x), we define eui = (rui−r̂ui)r̂ui(1−r̂ui). The
model parameters are updated based on the following equations:

pu ← pu − γ
(
λ1pu − eui(pTu + |R(u)|−

1
2

∑
j∈R(u)

yTj)
)

qi ← qi − γ(λ1qi − euipu)

yj ← yj − γ(λ2yj − |R(u)|−
1
2 euipu)

wij ← wij − γ(λ2wij − eui(ruj − r̄u))

au ← au − γ(λ3au − eui)
bi ← bi − γ(λ3bi − eui)

where the parameter γ is the learning rate and λ1, λ2, λ3 are regu-
larization parameters for different type of parameters.

3. DYNAMIC FACTORIZATION MODEL
This section discusses a variety of techniques for utilizing the

available date and time information associated with each rating.
The key of incorporating temporal dynamics into the matrix factor-
ization framework is to let the user/item factors and biases become
time dependent. In the following two subsection, we discuss sev-
eral schemes we attempted to design date-time dependent versions
of user/item factors pu(d, t), qi(d, t) and biases au(d, t), bi(d, t).

3.1 Date-Time Dependent User/Item Biases

The user bias au in the basic matrix factorization is used to cap-
ture the general tendency of a user to assign high or low ratings,
which is a rather person dependent effect. For example, there are
very picky users who rarely give high ratings on items and there
are casual users who likes to rate highly on most items they find
acceptable. On the other hand, the item bias bi is used to capture
the overall popularity of an item.

The date can have the following effects on the user/item biases as
first suggested in [7]: Firstly, a user may change their rating scale
over time as he becomes more adept at use rating to express his
personal preferences or becomes more picky in the music listened
to. Secondly, item popularity may change overtime, which is espe-
cially true for the highly dynamic music domain where new artists
and genres quickly rise and fall whereas a small number of classics
may remain popular overtime.

In addition to date, the time may also affect music ratings in the
several ways. Firstly, a user may rate differently during different
hours. For example, in the day time, as one is often busy with work
at hand and less willing to spend time to rate items, a user may
mostly assign low ratings for songs that he finds really annoying
as a way to filter out bad songs. Secondly, different songs may be
more(or less) popular during different hours. For example, dance
music may be more preferred at night whereas light music may be
generally more preferred in the morning.

3.1.1 Basic Date/Time Dependent Bias Model
One simplest approach to design date-time dependent biases is to

assume date and time have independent effect and then simply as-
sign a separate bias value to each date and time point. An important
decision in this scheme is the granularity at which to treat data and
time. Our design is based on discretization of the involved 6,000
days and 24 hours of a day into equal sized bins such as every week
and every 30 minutes and then designate a user/item bias for each
date bin and time bin, which leads to the following formulation:

au(d, t) = au + au,Bin(d) + au,Bin(t) (6)

whereBin(d) andBin(t) denote the bin index associated with the
particular date and time.

3.1.2 Piecewise Linear Function based Bias Model
The previous bin based bias model is rather coarse and has the

following disadvantages. Firstly, biases in different bins are learnt
separately and the underlying temporal order of the bins are totally
ignored. In a word, it essentially treats date and time as categorical
information and can not reflect whether two bins are consecutive
or far apart. Secondly, different date and time values falling into
the same bin are forced to take on the same value regardless of
whether they are near the beginning or end of the bin boundaries. It
will be more desirable to have a model that considers temporal or-
dering while being able to more smoothly interpolate between dis-
crete date and time points. To achieve this, we also design a more
flexible piecewise linear time series based model for modeling the
biases. In particular, we designate Ka and Kb equally distanced
date and time “knots” d0, d1, ..., dKa and t0, t1, ..., tKb along the
time line. We let each user and item have a bias value at each of
these date and time points. Then given any particular date and time
d and t, the bias values are interpolated from the bias parameter of
the preceding and succeeding date and time knots:

au(d, t) = au +
(d− d−)au(d−) + (d+ − d)au(d+)

δdate

+
(t− t−)au(t−) + (t+ − t)au(t+)

δtime
(7)

where d−, d+ denote the pair of consecutive knots between which
the date value d falls into. t− and t+ are defined similarly. The
value δdate and δtime denote the distance between consecutive date
and time knots. It can be seen that under this model, the user and
item biases are modeled by a piece wise linear function of date and
time which are controlled by Ka and Kb knots respectively.

3.1.3 Tensor based Bias Model
There are two major drawbacks of the previous two models for

modeling date-time dependent user/item biases. Firstly, they are
not capable of extrapolating into unseen date value or unseen hours.
More specifically, the bias at any date later than the date of the lat-
est rating or earlier than the first rating in the training data set can
not be predicted at all. A second drawback is that they do not con-
sider the interaction effects between date and time, such as songs
with happy mood are more popular in the night during Christmas
seasons. In this subsection, we describe a tensor factorization based
framework for modeling date-time dependent user/item biases. The
key idea is to treat the collections of date-time dependent biases
au(d, t) as being represented as a 3 dimensional tensor with each
dimension corresponding to user, date and time respectively.

au(d, t) = wTu u(d) + wTu v(t) + u(d)T v(t) (8)

Here u(d) and v(t) are vectors corresponding to the latent factors
of each date and time point and are treated in the same way as the
date-time dependent biases via a piecewise linear function to model
each dimension of the factors as a time series.

ud,k =
(d− d−)ud−,k + (d+ − d)ud+,k

δdate
(9)

The time factors v(t) are modeled similarly and the detailed for-
mulas are omitted due to space limitation.

3.2 Date-Time Dependent User/Item Factors
Unlike the biases, the user/item factors captures the interaction

between users and items, which we refer to as second-order ef-
fect. A date-time dependent user factor pu(d, t) allow us to capture
user’s changing preferences over different types of items over date
and time. For example, a user may be into Dance/Rock music when
he is young but may gradually start to like Jazz/Classical music as
he grow older. Also, a user may prefer different types of music
during working hours versus during night time. Similarly, the date-
time dependent item factor qi(d, t) can enable the modeling of how
an item may appeal to users with different characteristics over time.
Furthermore we also assume the effect of date and time can be sep-
arated additively. This leads to the following parametrization:

r̂ui(d, t) = f
(
au + bi + ṗTu (d)q̇i + p̈Tu (t)q̈i + pTu qi

)
(10)

Note that rather than replacing the original static user factor pu by
a date-time dependent version as have been used in [7], we have
created another two sets of separate factors ṗ(d), q̇i and p̈(t), q̈i
to capture date and time dependent second order effects. This has
the flexibility of allowing us to model date-time dependent second
order effects with factors of a smaller dimension than the static
user/item factors pu, qi. This can significantly reduce the number
of additional free parameters incurred by introducing date-time de-
pendent factors and is an effective strategy to counter overfitting as
we have found in experiments. The date-time dependent factors are
modeled using the following techniques.

3.2.1 Piecewise Linear Time Series

One way to model date-time dependent factors is via multidi-
mensional piecewise linear time series. We assume that the user/item
factors are less subject to abrupt changes and are expected to be
varying more smoothly over time than the user/item biases. We
therefore use two separate parametersK′a andK′b to set the number
of knots on the time line for date-time dependent user/item factors.
The resulting user factor is shown as follows:

pu(d, t) = pu +
(d− d−)pu(d−) + (d+ − d)pu(d+)

δdate

+
(t− t−)pu(t−) + (t+ − t)pu(t+)

δtime
(11)

Empirically, we found that a much smaller number of knots are
needed for factors compared with the biases.

3.2.2 Time Centered Factor
We also add a center decay-style factor. The user factor is given

as follows

pu(t) = pu + e−βu|t−c(u)|p(c)
u (12)

Here c(u) is the center point of user u’s time line and p(c)
u is the

time centered user factor. The factors at other time points are in-
terpolated from the centered user factor via an exponential decay
function with an decay rate parameter βu. βu and p(c)

u is trained by
the data set. This center decay style time factor helps fix the lim-
itation of the piecewise linear-style factor with one knot because
interpolation mainly focus on two sides(beginning and end). And
time centered factor can help improve the modeling over center of
time.

3.3 Time Dependent Neighborhood Model
In addition to the factors and biases, the neighborhood based

component of our model can also take time into account by empha-
sizing more on the user’s more recent ratings with an exponentially
decay time weighting function. The idea is shown as follows

r̂ui =f
(
au + bi + pTu qi

+ |N(u, i; k)|−
1
2

∑
j∈N(u,i;k)

e−αu|∆tj |(ruj − b̄u)
) (13)

∆tj is the amount of time between the time of ruj and the predic-
tion time. αu is initialized by 0 and trained by the data set. This
setting can make the recent history contribute more influence over
the prediction, and yield better prediction.

3.4 Session Locality
A quite common phenomenon that we have found in the KDD-

CUP data set is the presence of rating sessions, in which users rate
multiple items consecutively with only several minutes or less time
apart. In addition, we also noted that consecutive ratings within
the same session often have the same value most. We refer to this
continuity in user’s rating behavior as session locality.

To test if we can exploit the session locality effect to improve
prediction accuracy on the test data, we did some analysis and find
that 72% of the ratings in test set actually happened within 1 minute
of some ratings in the training and validation set. To model session
locality, we introduce a new session bias. More specifically, for
each 1 minute interval where a user has a rating in both training
and test data, we designate a bias cu,s, where s denote the index of
such intervals extracted for user u. Despite the simplicity of this
idea, we have found it to work surprisingly well.

3.5 Multi Resolution Dynamic Models
A critical design choice in both our date-time dependent factor

and bias modeling is the number of knots, which controls the gran-
ularity at which the model deal with time varying user/item char-
acteristics. Models with large number of knots can capture tran-
sient behaviors of users/items more effectively but may be subject
to overfitting whereas a small number of knots can capture slowly
drifting behaviors. As can be seen, there is a natural trade off be-
tween granularity and generalization. Even more trickier is the fact
that the optimal granularity for different users and items can be
quite different and a particular setting with the best overall accu-
racy can be suboptimal for some users and items. To tackle this
difficulty, our solution is to train a collection of dynamic factoriza-
tions with increasing number of knots, each of which can capture
temporal dynamics with different granularity. The final prediction
will then be based on the combination of this collection of models
rather than any single one. We refer to this framework as multi-
resolution dynamic factorization model. In our experiments, we
have found that the simple average of a collection of 8 models with
number of knots ranging from 2 to 64 for the factors and 20 to 600
for the biases can improve upon the best single model’s RMSE by
over 0.3. In addition to the simple averaging method for combining
different models, we also designed a much more effective ensemble
learning method for model combination, which we will describe in
section 7.

4. INCORPORATING TAXONOMICAL IN-
FORMATION

One interesting property of Yahoo! music data set is that items
belong to multiple categories, namely tracks, albums, artists, and
genres. The relations among these items naturally form a directed
acyclic graph (DAG) structure, where artists are above albums,
which then contains tracks, whereas genres can annotate all the
other three items. How to utilize this taxonomical structure thus
raises another interesting challenge.

The categories of items and their parent-child relations can have
the following effect. Firstly, the user’s rating behavior on different
types of items may be intrinsically different. Secondly, a user’s
preference over two closely tied items in the taxonomy is expected
to be correlated. For example, a user who favors an artist is more
likely to assign high ratings to his songs. Similarly, a user who
hates a genre rarely give good ratings on songs in that genre. In the
following subsections, we describe several further enhancements
to the proposed matrix factorization model in order to exploit these
two effects caused by taxonomy.

4.1 Category and Artist Bias
We first examine the user’s rating behaviors on different cate-

gories of items. In particular, we examine the distribution of rating
values on each of the four types of items, which are plotted in Fig-
ure 1. It can be clearly seen that users do exhibit highly distinct
rating behaviors across item types. In particular, we can note rat-
ings on genres are much more polarized than ratings on other types
of items. To model this effect, we augment the user bias au with
4 additional bias parameters for track, album, artist and genre re-
spectively.

We also try to model the fact that many users may have their
favorite artists, which leads to high rating over these artists’ tracks
and albums. We model this phenomenon by introducing a user-
artist bias to the bias term. But it’s not practical to add the bias
term for every user artist pair. Since this can result in too many
parameters to estimate. So we first find a potential set of possible

Figure 1: The Distribution of Ratings Scores on Each Category
of Items

user artist pair from the data. We extract user artist pairs when
a user rated an artists’ tracks and/or albums more than a certain
number of times and introduce a user artist bias when the pair are
in this set. By this way, we can only estimate the parameters for
potential user-artist pairs. This way also ensures we have enough
data to estimate the parameters.

The extended predictor with these two new types of taxonomy
induced biases is shown as follows

r̂ui = f
(
bi + au + au,Cat(i) + au,Art(i) + pTu qi

)
(14)

where Cat(i) and Art(i) denote the category and artist index of
item i respectively.

4.2 Taxonomy Neighborhood
Traditional approach using neighborhood information requires

pre-computation of k-nearest neighborhood set. Because Yahoo!
Music data set provide the taxonomy information. It’s natural to
make use of taxonomy information to build the neighborhood set.
During our experiment, we find users’ rating over artist have strong
correlation with their ratings over albums and tracks of the artist. So
we try to add artist-track, artist-album neighborhood information.
The idea is shown as follows:

r̂ui =f
(
au + bi + pTu qi + wi(ru,Art(i) − b̄u)

)
(15)

4.3 Taxonomy Aware Predictor
One observation we made about the KDD-Cup data set is that the

rating sparsity within different categories of items are highly dif-
ferent. From the Table 1 we can see that on average genres tend to
receive the most ratings, followed by artists and then albums with
tracks tend to have the least number of ratings on average. Such
skewed data sparsity over different item will imply that user pref-
erence over more frequently rated items such as genres and artists
can be estimated more robustly.

One way to incorporate the correlations between connected items
is to directly let the predictor r̂ui to depend on item i’s parameters
as well as the parameters associated with its ancestors. In particu-
lar, let řui(d, t) denote our original design of the predictor (14) and

Table 1: Rating Statistics Across Different Item Categories
Category Num of Items Total Num of

Ratings
Avg Num of
Ratings

Genre 992 13,829,235 13,940
Artist 27,888 74,985,515 2,688
Album 88,909 48,485,593 545
Track 507,172 119,503,892 235

letAi denotes the set of ancestors of item i in the taxonomy, we de-
sign the taxonomy aware predictor based on the original predictor
as follows:

r̂ui(d, t) = ω · řui(d, t) +
1− ω
|Ai|

·
∑
j∈Ai

řuj(d, t) (16)

where the parameter ω ∈ [0, 1] controls the relative importance of
the target item itself and its ancestors’ information. With a smaller
ω value, the predicted rating on an item will depend more on the
predicted user ratings over its ancestors. Based on this formulation,
an item’s parameters are automatically coupled with the parameters
of its ancestors. Thus when updating parameters based on the error
on the target item, both the factors of the item itself and its ancestors
will be updated.

5. COST SENSITIVE MODEL LEARNING
VIA IMPORTANCE SAMPLING

Our analysis on the composition of the training and test data of
the Yahoo! music data set reveals that all the ratings of a particular
user in the test data are dated on or after the last day of their rat-
ing in the training and validation data. Furthermore, we also find
that the validation data are all dated later than the training data as
well. This indicates that the evaluation of this track actually empha-
sizes more on predicting each user’s latest preferences. Given the
lengthy period of time covered by the training data, it is important
to inform the model learning strategy to focus more on the latest
data rather than equally treating both historical and recent data. It
should be noted that model has already incorporated some mech-
anisms for supporting date-time awareness, which should be able
to remove the global influence of certain non-stationary data char-
acteristics within particular time periods. However, our training
objective is still trying to maximizing the model’s accuracy over all
training data. Therefore, we should adapt the training objective to
make it cost-sensitive.

One common method to implement cost-sensitive model learn-
ing is simply to assign a weight to each training rating instance
based on its recency and uses a weighted sum of prediction errors
in the objective function[12]. Intuitively, each user’s more recent
ratings should be assigned a larger weight whereas his older rat-
ings should have a smaller weight. As incorporating such instance
weights did not change the additive form of the objective, the re-
sulted stochastic gradient update rule can be easily adapted by scal-
ing the step length γ with an instance dependent weight wij . Un-
fortunately, we find this simple technique does not work well with
the stochastic gradient descent algorithm and does not led to im-
proved performance on the test set.

The basic stochastic gradient descent algorithm can be regarded
as randomly sample a rating instance from a uniform distribution
over the available training data in each update step. This inspires
us to design an alternative strategy for cost sensitive learning based
on importance sampling using a nonuniform distribution over the
training data[13, 11]. In particular, we let the probability of each

rating being sampled to be proportionate to its recency based weight,
which naturally lets the algorithm more frequently update its pa-
rameters based on more recent data. While there exists many pos-
sible design choices on the recency weight, we nevertheless find the
following simple strategy to work very well. More specifically, we
sample the validation data for each user 3 times more often than the
ratings in the training data. Using this simple importance sampling
technique, we have achieved RMSE improvement ranging between
0.1 to 0.3 for various different models.

6. IMPLEMENTATION
In implementing the ideas proposed in previous sections, we face

two major problems: (1) There are so many variants of models we
want to experiment with. (2) Yahoo! music data set is so big that
we must design a scalable solution. In the next two sections, we
will discuss how to solve these problems.

6.1 Feature-based Matrix Factorization
We have already mentioned many variants of matrix factoriza-

tion models in the previous sections. Instead of implementing each
variant one a time, we design a toolkit to solve the following ab-
stract model in Equation 17

y =f
(
µ+

(∑
j

b
(g)
j γj +

∑
j

b
(u)
j αj +

∑
j

b
(i)
j βj

)

+

(∑
j

pjαj

)T (∑
j

qjβj

)) (17)

The input consists of three kinds of features < α, β, γ >, we call
α user feature, β item feature and γ global feature. α describes the
user aspects that’s related to user preference. β describes the item
properties. γ describes some global bias effects. Figure 2 shows the
idea of the model. We can find most of the models we described in
the previous sections can fit into this abstract framework. Similar
idea has been proposed before by libFM[9]. Compared with their
approach, our model divides the features into three types, while
there is no distinction of features in libFM. This difference allows
us to include global feature that doesn’t need to be taken into factor-
ization part, which is important for bias features such as user day
bias, neighborhood based features. The division of features also
gives hints for model design. For global features, we shall consider
what aspect may influence the overall rating. For user and item fea-
tures, we shall consider how to describe user preference and item
property better. Basic matrix factorization is a special case of Equa-
tion 17. For predicting user item pair < u, i >, we can define

γ = ∅, αh =

{
1 h = u
0 h 6= u

, βh =

{
1 h = i
0 h 6= i

(18)

If we want to integrate neighborhood information, simply redefine
γ as Equation 19. Here index is a map that maps the possible pairs
in k-nearest neighborhood set to consecutive integers.

γh =

{
ruj−r̄u√
|N(u,i;k)|

h = index(i, j), j ∈ N(u, i; k)

0 otherwise
(19)

We can also include time dependent user factor by defining new α.
Taxonomy information can be integrated into β. We have opened
the source code of our toolkit1, see the footnote for the link. Using
the toolkit, we can implement most of the described ideas simply
by generating features.
1http://apex.sjtu.edu.cn/apex wiki/svdfeature

Question

Answer

rU,I

U

User Features

User Feature Bias

Item Features

Item Feature Bias Global Feature Bias

Merged User Factor
User Factor

Merging

Merged Item Factor

Global Features

I
Item Factor

Merging

Figure 2: Feature-based matrix factorization

Matrix FactorizationBuffer
Stochastic Gradient Descentin Memory

INPUTData
in Disk

FETCH
Thread 1 Thread 2

Figure 3: Execution pipeline

6.2 Input Buffering and Execution Pipeline
Because our training data can be extremely large in real appli-

cations, we can’t load all of data into memory. In our approach,
we store the data into a buffer file in hard-disk. The data is shuf-
fled before storing. Then the training program linearly iterate over
the buffer and update the model for each training sample. This ap-
proach allows us to do training as long as the model fit into memory.

Storing data into hard-disk can solve the problem of large train-
ing data size. However, it introduces additional cost of hard-disk
reading. To minimize the cost of I/O, we use a pre-fetching strat-
egy: An independent thread is created to fetch the data in hard-disk
into a memory queue. At the same time, the training thread reads
the data from memory queue and update the model. The procedure
is shown in Figure 3.

This pipeline style of execution removes the burden of I/O from
training thread. As long as I/O speed is similar to(or faster than)
training speed, the cost of I/O is negligible. With input hard-disk
buffering and pipeline execution, we can train a single model with
22.17 RMSE(model 11,Table 3) over test data using less than 2GB
memory in 1 day.

7. INFORMATIVE ENSEMBLE LEARNING
As we pointed earlier, different model design choices and param-

eter settings may have their respective pros and cons. The single
model with the best overall performance over a large population
of users and items may not be the most accurate on every of the
instances. The different models often have their own advantages
under different conditions. For example, the empirical study car-
ried by Cremonesi et. al.[3] demonstrated that for the matrix fac-
torization model to perform well on tail items (i.e., items with few
ratings) a larger dimensionalityK is often more desirable, whereas
large K often leads to overfitting on the head items. Similarly, the
increased parametric complexity of a dynamic factorization model
with finer temporal resolution can handle transient user/item char-
acteristics well but are also more prone to overfitting. On the other
hand, dynamic models with coarser temporal resolution can han-

dle drifting behaviors well but not transient behaviors. The usage
of taxonomical information is faced with similar trade off. For an
item with sufficient ratings, its item factor may be learnt more ef-
fectively without imposing any correlation or dependence on the
factors of its ancestors, whereas rarely rated ones should be able to
benefit more from absorbing information from the ancestors. These
forms the basic motivation for using the ensemble approach to com-
bining multiple models, which has been demonstrated to be highly
effective in the Netflix prize competition already[5].

In particular, we consider the stacking approach to ensemble
learning, which first learn a set of models (i.e., component models)
using the original training data and then learn another regression
model with the component models’ predictions as input features
using an additional set of validation data[2]. Once the regression
model for model combination is learnt, the component models are
then retrained using the combined training and validation. In the
end, the ensemble regression model is used to combine component
models’ predictions on the test data to make the final predictions.

Traditional methods for ensemble learning for collaborative fil-
tering [5] only use the component models’ predictions as the input
features. Each training instance is of the format (< r̂0

ui, r̂
0
ui, ..., r̂

n
ui >,

rui), where r̂tui denote the prediction for (u, i) pair by the t-th
model. In this work, we have devised a slightly more complicated
stacking approach by augmenting the aforementioned representa-
tion with an additional set of pmeta features, which leads to the fol-
lowing instance representation(< f1, f2, ..., fp, r̂

0
ui, r̂

0
ui, ..., r̂

n
ui >,

rui). We then learn a nonlinear regression model using gradient
boosted regression tree and neural network. The meta features can
describe different user/item characteristics and other more compli-
cated metrics derived based on user, item and the training data. The
purpose of incorporating meta features is to inform the stacking
models about how different user/item segments or special condi-
tions can be determined under which different subsets of models
can be more effectively combined. As a result, we refer to our en-
semble learning framework as informative ensemble.

We have used a collection of total 16 models with different pa-
rameter settings and design choices for building the ensemble model.
The models are in three types in general:

• 100NN neighborhood model without factor: Although this
type of model doesn’t work well alone, it complements other
models well.

• Factorization model using basic time bias and piecewise lin-
ear time bias: These type of model works well when there

Table 2: Features Used in the Informative Ensemble Learning
ID Feature Description
1 Number of ratings of the user
2 Number of ratings of the item
3 Mean rating of the user
4 Mean rating of the item
5 Variance of the ratings of the user
6 Variance of the ratings of the item
7 Number of days on which the user have ratings

in the training data
8 Number of days between the user’s first and last

rating in the training data
9 Whether the user has any ratings on any ances-

tors of the item in the training data
10 Whether the user has any ratings within 5 min-

utes on the same day as the target rating
11 Whether the user has any ratings in the same

hour as the target rating
12 Number of available neigborhood informa-

tion(How many items u rate in N(u, i; k))

is enough data to estimate the bias parameters. However,
it doesn’t work well when the time slot corresponds to few
training data .

• Factorization model using tensor time bias: Complements
with previous style of time bias. Can work even when user
didn’t rate in the corresponding time slot.

During our work, we have designed a total of 12 meta features,
which are described in Table 2. Some of the meta-features are de-
signed to show possible difference in models. For example, 100NN
model may work well when many neighborhood information avail-
able, tensor bias model may work better in test data far from train-
ing data. These intuitive explanation justifies why our informative
ensemble can improve the performance of our final result.

Both Gradient Boosted Regression Tree (GBRT) and Neural Net-
works (NN) were used for training the regression model. For GBRT,
we set the maximum depth of each tree to be 6 and the number of
trees to be 40, which achieved a test RMSE of 21.2989. The NN
model consists of one hidden layer with 50 units with sigmoid acti-
vation functions, which obtained a test RMSE of 21.3257. Our final
solution is a simple average of the predictions by the two ensemble
model, which achieved a final performance of 21.2634.

8. CONCLUSION
In this paper, we describe the design of matrix factorization mod-

els and ensemble learning methods for accurate rating prediction
on the Yahoo! music data used for KDD-Cup 2011. We study
different extensions of the matrix factorization to handle temporal
dynamics and taxonomical information. We also propose a meta-
feature based ensemble learning framework for combining multiple
models. Experimental results on KDD-Cup data sets demonstrated
the effectiveness of the various techniques proposed.

9. ACKNOWLEDGEMENT
The team is supported by grants from NSFC-RGC joint research

project HKUST 624/09 and 60931160445. We greatly appreciate
the computing support from Professor Lin Gu.

10. REFERENCES

[1] R. M. Bell and Y. Koren. Scalable collaborative filtering with
jointly derived neighborhood interpolation weights. In
ICDM, pages 43–52, 2007.

[2] L. Breiman. Stacked regressions. Mach. Learn., 24:49–64,
July 1996.

[3] P. Cremonesi, Y. Koren, and R. Turrin. Performance of
recommender algorithms on top-n recommendation tasks. In
RecSys, pages 39–46, 2010.

[4] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer.
The Yahoo! Music Dataset and KDD-Cup’11. In KDD-Cup
Workshop 2011, 2011.

[5] M. Jahrer, A. Töscher, and R. Legenstein. Combining
predictions for accurate recommender systems. In
Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD
’10, pages 693–702, New York, NY, USA, 2010. ACM.

[6] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceeding of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’08, pages
426–434, New York, NY, USA, 2008. ACM.

[7] Y. Koren. Collaborative filtering with temporal dynamics. In
Proc. of SIGKDD 2009, 2009.

[8] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. IEEE Computer,
42(8):30–37, 2009.

[9] S. Rendle. Factorization machines. In Proceedings of the
10th IEEE International Conference on Data Mining. IEEE
Computer Society, 2010.

[10] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In Neural Information Processing Systems,
2007.

[11] V. S. Sheng and C. X. Ling. Roulette sampling for
cost-sensitive learning. In ECML, pages 724–731, 2007.

[12] K. M. Ting. Inducing cost-sensitive trees via instance
weighting. In Proceedings of the Second European
Symposium on Principles of Data Mining and Knowledge
Discovery, PKDD ’98, pages 139–147, London, UK, 1998.
Springer-Verlag.

[13] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive
learning by cost-proportionate example weighting. In
Proceedings of the Third IEEE International Conference on
Data Mining, ICDM ’03, pages 435–, Washington, DC,
USA, 2003. IEEE Computer Society.

APPENDIX
In this appendix, we summarize our experiments and discuss the
effectiveness of the methods. To show the effectiveness of each
component, we add one component at a time, until we get our best
single method. Table 3 shows the result of the experiments. The
number of latent factors is fixed at 64. We left the some slot empty
because we didn’t submit corresponding test prediction. To train
the models for test prediction, we use importance sampling by de-
fault. We can find the biggest performance gain was achieved by
the time aware modeling. The neighborhood information, implicit
feedback and category information also give improvement. And
these improvements do not conflict with each other so they can be
composite together to give a better predictor. Our best single pre-
dictor submitted is given by model 12 in Table 3 with 512 latent
factors.

Table 3: Performances of Different Single Models
ID Description Reference Section Validation RMSE Test RMSE
1 basic matrix factorization section 2.1 21.84 -
2 1 + item day bias (binsize=40 days,no time bin) section 3.1.1 21.74 -
3 2 + user day bias (binsize=1 day, no time bin) section 3.1.1 21.09 -
4 3 + category and artist bias section 4.1 21.04 23.01
5 4 + user tensor-bias (binsize=30 days) and factor (binsize=150 days) section 3.1.3 20.37 22.56
6 4 + user piece-wise linear bias and factor over day(1 bin) section 3.1.2,3.2.1 20.80 22.83
7 6 + taxonomy aware predictor(ω = 0.1) section 4.3 20.73 22.68
8 7 + taxonomy neighborhood section 4.2 20.59 22.58
9 8 + session locality section 3.4 20.38 22.44
10 9 + local implicit feedback section 2.3 20.15 22.28
11 10 + 10-nearest neighborhood section 2.2 20.04 22.17
12 11 + time center factor section 3.2.2 19.97 22.12
13 add time dependency to neighborhood in 11 section 3.3 19.94 -

Table 4: Component Models Used in the Ensemble
ID Description Validation RMSE
1 matrix factorization with category and artist bias (100 latent factors) 21.45
2 matrix factorization with category and artist bias (200 latent factors) 21.37
3 1 + category-artist bias+taxonomy aware predictor (ω = 0.1) 21.33
4 1 + category-artist bias+taxonomy aware predictor (ω = 0.2) 21.56
5 2 + category-artist bias+taxonomy aware predictor (ω = 0.1) 21.22
6 2 + category-artist bias+taxonomy aware predictor (ω = 0.2) 21.44
7 2 + tensor date bias (binsize 10 days) and piecewise date linear factor(binsize 150 days) 20.58
8 2 + tensor date bias (binsize 20 days) and piecewise date linear factor(binsize 300 days) 20.67
9 2 + tensor date bias (binsize 40 days) and piecewise date linear factor(binsize 600 days) 20.86
10 7 + implicit feedback 20.44
11 2 + tensor date-time bias (binsize 10 days, 15 mins) and piecewise date-time linear factor(binsize 150 days, 2 hours) 20.39
12 2 + tensor date-time bias (binsize 20 days, 30 mins) and piecewise date-time linear factor(binsize 300 days, 4 hours) 20.44
13 2 + tensor date-time bias (binsize 40 days, 1 hour) and piecewise date-time linear factor(binsize 600 days, 8 hours) 20.69
14 12 + implicit feedback 20.26
15 model 12 in Table 3, 512 latent factors 19.91
16 100-nearest neighbor information, with basic time bias, no latent factor 21.61

