

Contamination of Computational Biology

Genetic improvement of computational biology software, WB Langdon and Karina Zile, Evolutionary Computation in Computational Biology, <u>ECCSB</u> 16 July 2017, José Santos *et al.*, GECCO-2017 workshop. Room Topas1

W. B. Langdon Department of Computer Science

Contamination of Computational Biology

W. B. Langdon Department of Computer Science

Genetic Improvement of Computational Biology Software

- My thanks to <u>ECCSB-2017</u> organisers
- Paper deals with 2 topics
 - 1. genetic improvement of computation biology software
 - 2. improving data used in computational biology
- Concentrate on 2. problems with data

Contamination of Computational Biology

- How we found mouldy data in the human genome
- An upside
- The reverse:

human DNA in many species' reference genomes

- Problems of petabyte data cleaning
- Lessons

Mycoplasma Gene in the Human Reference Genome

- Visit to Matt Arno (King's College, London)
- Triplicate treatment v. control microarray
 - 1st 600 fold difference treatment v. control
 - 2nd 200 fold
 - 3rd nothing
- What is gene?
 - Affymetrix microarray HG-U133 +2 probeset 1570561_at was derived from GenBank AF241217
 - AF241217 "Homo sapiens unknown sequence" was submitted to GenBank in 2000

Run BLAST against everything

- <u>Blast</u> used to compare <u>AF241217</u> DNA sequence with all sequenced species
- AF241217 sequence matches itself and various species of Mycoplasma

	s - sequence similari	, searching - Hostochon				
NCBI BLAST Results						
Summa	ry Table Tool Outp	ut Visual Output Submission Details Submit Another Job				
Alignments Selection: Show Annotations Hide Annotations Show Alignments Hide Alignments Download in fasta format						
Align.		and a second	Length 🗢	Score 🗢		E() 🔶
1	EM_HTG:AF241217	Homo sapiens unknown sequence. Cross-references and related information in: Ontologies	249	225	100.0	1.0E-121
№ 2	EM_PRO:FJ876260	Mycoplasma orale strain MT-4 16S ribosomal RNA gene, partial sequence; 16S-23S ribosomal RNA intergenic spacer, complete sequence; and 23S ribosomal RNA gene, partial sequence. Cross-references and related information in: > Ontologies	2231	218	100.0	1.0E-117
√ 3	EM_PRO:AF294995	Mycoplasma orale 16S-23S ribosomal RNA intergenic spacer, complete sequence; and 23S ribosomal RNA gene, partial sequence. Cross-references and related information in: Literature Ontologies	738	218	100.0	1.0E-117
₫ 4	EM_PRO:JN689375	Mycoplasma orale isolate LJH 16S ribosomal RNA gene, partial sequence; 16S-23S ribosomal RNA intergenic spacer, complete sequence; and 23S ribosomal RNA gene, partial sequence. Cross-references and related information in: > Ontologies	535	214	99.0	1.0E-115
5	EM_PRO:AY737010	Mycoplasma orale 16S ribosomal RNA gene, partial sequence; 16S-23S ribosomal RNA intergenic spacer, complete sequence; and 23S ribosomal RNA gene, partial sequence. Cross-references and related information in: Literature Ontologies	882	214	99.0	1.0E-115
6	EM_PRO:AY762640	Mycoplasma indiense 16S ribosomal RNA gene, partial sequence; 16S-23S ribosomal RNA intergenic spacer, complete sequence; and 23S ribosomal RNA gene, partial sequence.	870	207	99.0	1.0E-111

NCBI Gene Expression Omnibus

- NCBI GEO is an archive of many thousands of gene expression datasets, including HG-133 +2.
- About 1% of published data contaminated with mycoplasma (33/2757) [BioTechniques, 47(6)]
- Positive response from authors of published papers.
- 2nd example found (and reported) [arXiv:1106.4192]
 - Uploaded to DNA data bank of Japan, DDBJ
 - Overnight to NCBI Washington, DC
 - Overnight to EBI, Cambridge

Mycoplasma Now known Problem

CREST

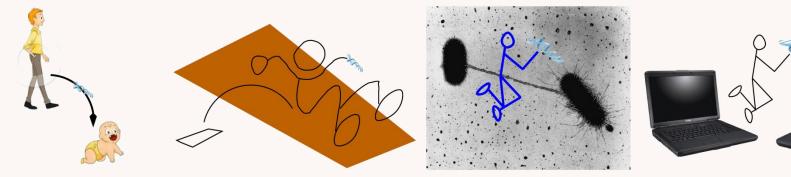
- Mycoplasma in 1000 Genomes Project [BioData Mining 7:3]
- Microbiologists recognise problem in wet labs.
- Do not recognise problem in silico

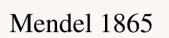
Contamination in other direction Human genes \rightarrow other species

Human genes in hundreds of non-primate DNA sequence databases

- E.g. bacteria, plants and fish.
- Examples found in most phyla

Big Data Clean up


- Problems have been repeatedly reported. Acknowledged but response was "we only curate data for the biologists" (I.e. those who uploaded crap, in 2000, have to fix it)
- Attitude changing?
- NCBI holding petabytes 10¹⁵ of data online
- Data cleaning/Data Wrangling is a well known problem
- Labour intensive
- Manual methods cannot scale!



Genes Spread

- Microbes infect microbiology laboratories
- 2 genes have been copied into GeneBank
 - 1 via Japan, 1 into commercial tool. Others? patents?
 - Many human genes in nonprimate databases
- Data are routinely copied, allowing virtual genes (venes) to spread globally.
- Laboratories routinely sterilise glassware. They do not sterilise their computers.

Genes Jump Silicon Barrier

Jumping genes McClintock 1930

Horizontal gene transfer 1959

Gene transfer to GenBank Today

- 1865 vertical gene transfer
- 1930 gene transfer along chromosomes
- 1959 antibiotic resistance between species
- Jumping genes escape biology, cross the silicon barrier and roam computer databases

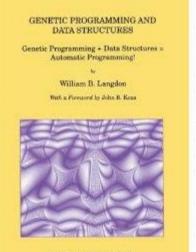
Conclusions

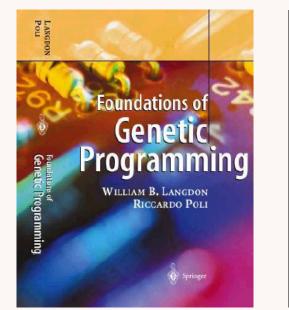
- Cultural disconnect
 - Computer scientists may assume Biological data is ok (Biologists know it isn't)
 - Biologists cannot conceive that their computer may be contaminated.
- Need to be skeptical of others' data (as we would be of our own).

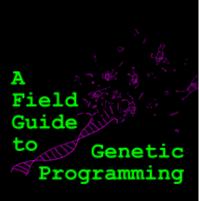
END

http://www.cs.ucl.ac.uk/staff/W.Langdon/

http://www.epsrc.ac.uk/ EPSRC


W. B. Langdon, UCL


Genetic Improvement



CREST Department of Computer Science

KLUWER ACADEMIC PUBLISHERS

Riccardo Poli William B. Langdon Nicholas F. McPhee

> with contributions by John R. Koza

The Genetic Programming Bibliography

http://www.cs.bham.ac.uk/~wbl/biblio/

11628 references, 10000 authors

Make sure it has all of your papers!

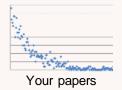
E.g. email W.Langdon@cs.ucl.ac.uk or use | Add to It | web link

RSS Support available through the Collection of CS Bibliographies.

Co-authorship community. Downloads

bibliography

A personalised list of every author's GP publications.



Search the GP Bibliography at

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

Downloads by day

