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Traditional Programming
Problems in GP 

● Mimic human programming
● Large instruction set

○ multiple data types
○ control flow
○ I/O

● Based on tests
○ input/output example behavior



Traditional Programming
Problems in GP 

● Need benchmark problems!
○ interest shown in community survey1

○ but, none recommended in survey paper
● Word count problem

1D. R. White, J. Mcdermott, M. Castelli, L. Manzoni, B. W. Goldman, G. Kronberger, W. Jaskowski, U.-M. 
O'Reilly, and S. Luke. Better GP benchmarks: community survey results and proposals. Genetic 
Programming and Evolvable Machines, 14(1):3-29, Mar. 2013.





Unix Command wc



Unix Command wc

newlines
words

characters



Why wc Makes An Interesting 
Traditional Programming Problem

● Requires multiple data types
● Imitates real program
● Difficult but reasonably fast
● Open source, easy to implement
● Generalization to unseen test cases



Generate wc Problem Instance:
Test Cases

● 0 to 100 character files
● Random string

○ 200 training set  --  500 test set
● Random string ending in newline

○ 20 training set    --  50 test set
● Edge cases

○ 22 training set
○ examples: “”, “A”, “\n”, “\n” repeated for 100 chars



Example Experiment
● Compare parent selection techniques

○ lexicase selection
○ tournament selection
○ implicit fitness sharing selection



Lexicase Parent Selection
● Emphasizes individual test cases

○ not aggregated fitness across test cases
● Uses random ordering of test cases for each 

selection event
● Unlike in Pareto selection, some test cases 

provide more selection pressure than others



Lexicase – Pseudocode
To select single parent:

1. Shuffle test cases
2. First test case – keep best individuals
3. Repeat with next test case, etc.

a. Until one individual remains



Push and PushGP
● Push - Stack-based language for GP
● Arguments and results from typed stacks
● Executing code also on stack

● PushGP - Mostly typical GP using Push
http://pushlanguage.org



Instructions
● General purpose:

○ I/O
○ control flow
○ tags for modularity
○ string, integer, and boolean
○ random constants



PushGP Parameters



Performance Metrics for
Traditional Programming Problems

● When comparing sets of runs, don’t use 
mean best fitness
○ don’t care about incremental improvements of GP

● Care about perfect solutions
○ must pass training and unseen test sets

● Compare success rates



Success Rates
● Fisher’s exact test for significance
● Confidence intervals on difference



Results
Selection

Tournament 
Size

Successes
(200 runs)

Lexicase - 11
Tournament 3 0

5 0
7 0

Implicit Fitness
Sharing

3 0
5 0
7 0



Results
● 95% confidence interval: [0.020, 0.088]
● Small but meaningful differences



Conclusions
● More traditional programming in GP!

○ problems/benchmarks
○ wc problem good starting point
○ applications

● Lexicase selection
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