
Word Count
as a Traditional Programming Benchmark
Problem for Genetic Programming

Tom Helmuth and Lee Spector

Traditional Programming
Problems in GP

● Mimic human programming
● Large instruction set

○ multiple data types
○ control flow
○ I/O

● Based on tests
○ input/output example behavior

Traditional Programming
Problems in GP

● Need benchmark problems!
○ interest shown in community survey1

○ but, none recommended in survey paper
● Word count problem

1D. R. White, J. Mcdermott, M. Castelli, L. Manzoni, B. W. Goldman, G. Kronberger, W. Jaskowski, U.-M.
O'Reilly, and S. Luke. Better GP benchmarks: community survey results and proposals. Genetic
Programming and Evolvable Machines, 14(1):3-29, Mar. 2013.

Unix Command wc

Unix Command wc

newlines
words

characters

Why wc Makes An Interesting
Traditional Programming Problem

● Requires multiple data types
● Imitates real program
● Difficult but reasonably fast
● Open source, easy to implement
● Generalization to unseen test cases

Generate wc Problem Instance:
Test Cases

● 0 to 100 character files
● Random string

○ 200 training set -- 500 test set
● Random string ending in newline

○ 20 training set -- 50 test set
● Edge cases

○ 22 training set
○ examples: “”, “A”, “\n”, “\n” repeated for 100 chars

Example Experiment
● Compare parent selection techniques

○ lexicase selection
○ tournament selection
○ implicit fitness sharing selection

Lexicase Parent Selection
● Emphasizes individual test cases

○ not aggregated fitness across test cases
● Uses random ordering of test cases for each

selection event
● Unlike in Pareto selection, some test cases

provide more selection pressure than others

Lexicase – Pseudocode
To select single parent:

1. Shuffle test cases
2. First test case – keep best individuals
3. Repeat with next test case, etc.

a. Until one individual remains

Push and PushGP
● Push - Stack-based language for GP
● Arguments and results from typed stacks
● Executing code also on stack

● PushGP - Mostly typical GP using Push
http://pushlanguage.org

Instructions
● General purpose:

○ I/O
○ control flow
○ tags for modularity
○ string, integer, and boolean
○ random constants

PushGP Parameters

Performance Metrics for
Traditional Programming Problems

● When comparing sets of runs, don’t use
mean best fitness
○ don’t care about incremental improvements of GP

● Care about perfect solutions
○ must pass training and unseen test sets

● Compare success rates

Success Rates
● Fisher’s exact test for significance
● Confidence intervals on difference

Results
Selection

Tournament
Size

Successes
(200 runs)

Lexicase - 11
Tournament 3 0

5 0
7 0

Implicit Fitness
Sharing

3 0
5 0
7 0

Results
● 95% confidence interval: [0.020, 0.088]
● Small but meaningful differences

Conclusions
● More traditional programming in GP!

○ problems/benchmarks
○ wc problem good starting point
○ applications

● Lexicase selection

Acknowledgments: This material is based upon work supported by the National Science Foundation under Grants No. 1017817
and 1129139. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

