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ABSTRACT
This paper presents a new model for regression problems
based on Multi-Gene and Quantum Inspired Linear Genetic
Programming. We discuss theoretical aspects, operators,
representation, and experimental results.

1. INTRODUCTION
The development of new GP regression models is relevant

to provide more accurate results through fewer evaluations,
and two distinct approaches are possible: (i) modify the GP
basic structure: finding new ways to codify a solution and
thus providing new recombination operators. There is some
work in this area, such as Linear GP [1, 2]; (ii) allowing more
outputs per GP individual: a simple approach is to enable
more functions per individual and to combine their outputs,
like Multi-Gene (or Multi-Tree) GP (MGGP) [3].

Thus, new GP based models that can operate in both
senses could generate better results within fewer evaluations.
This paper proposes a Quantum-Inspired Multi-Gene Linear
GP model (QIMuLGP) for regression tasks, a generalization
of Quantum-Inspired Linear GP (QILGP) [2]. QIMuLGP
modifies canonical GP structures, explores new recombina-
tion operators and enables several outputs per individual
that can be combined applying the least squares method.
We evaluated this approach on 11 datasets, comparing its
results with GP, MGGP and QILGP.

2. QUANTUM-INSPIRED MULTI-GENE GP
We propose a novel GP model in this paper: Quantum-

Inspired Multi-Gene Linear GP (QIMuLGP). The main dif-
ference between the original QILGP [2] and this generaliza-
tion is that each individual has more than one chromosome.
Therefore the fitness of an individual results from a linear
combination of each chromosome output, where the weights
are adjusted using least squares method – like MGGP.

Figure 1 illustrates QIMuLGP structure and its basic op-
eration. It has a quantum population with N quantum in-
dividuals (QIs) with M chromosomes each (e.g. N = 3 and
M = 4 in Figure 1). QIMuLGP has two classical individ-
uals (CIs): one to store an observed individual and other
for the best individual found. Through CIs, x86 machine
code programs are generated. Figure 1 also enumerates four
basic steps that repeat N times to complete a generation:
1st. a QI is observed generating a CI (Observed Individual);
2nd. the M chromosomes of Observed Individual are linearly
combined to calculate its fitness; 3rd. if its fitness is better,
it is copied to Best Classical Individual ; 4th. an operator P

Figure 1: Basic diagram of QIMuLGP model.

is applied to the QI observed in step 1, taking as reference
Best Classical Individual, increasing the probability that fu-
ture observations of the QI results in CI more similar to the
best found.

The observation of a QI comprises observing each of its
chromosomes, which defines the chromosomes of the result-
ing CI. The Figure 2 shows the observation process. The
evolution continues the same way as QILGP.

3. RESULTS AND DISCUSSIONS
Tables 1 and 2 present the main results (RMSE) and stan-

dard deviation (σ) for the test set as well as the time spent
for performing an evaluation (milliseconds). We varied the
number of evaluations according to the number of variables
of each dataset (parenthesis in the first columns) multiplied
by some default values (3,000, 5,000, 7,000, 11,000).In gen-
eral, two patterns can be identified: (i) performing more
evaluations can benefit almost all evolutionary algorithms;
(ii) Multi-Gene approaches (MGGP and QIMuLGP) com-
pare favorably with their canonical counterparts.

QIMuLGP enhanced the average RMSE of QILGP about
54%, with a dispersion reduction of 10%, but the compu-
tational cost was 24 times higher. The comparison with
MGGP shows that QIMuLGP RMSE values were 19% higher
on average. However, the proposed model had an speedup
factor of 8.
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Figure 2: Creation of a gene by the observation of a
quantum gene.

Table 1: Main results of GP and MGGP for test set.
GP

Evals/vars 3,000 5,000 7,000 11,000 ms/eval
ABA(8) 2.32489 2.34160 2.27052 2.25400

σ 0.01600 0.02610 0.05027 0.03850 3.37462
MPG6 (5) 5.85305 6.42550 4.90581 4.65530

σ 0.34086 0.16460 0.27672 0.27380 0.23375
MPG8 (7) 4.84849 4.93290 4.45391 4.30520

σ 0.26502 0.09670 0.12933 0.16150 0.48711
FRD (5) 2.65968 2.66270 2.36383 2.54460

σ 0.20180 0.28990 0.28181 0.30970 1.50323
LAS (4) 29.2293 29.8512 28.8769 25.6498

σ 1.25435 0.97750 1.46215 2.12210 1.52929
CPU (6) 80.6985 94.9208 78.1299 74.3228

σ 6.13706 7.82560 8.83915 6.10730 0.24385
PLA (2) 3.11145 3.59640 2.83740 2.66930

σ 0.12580 0.41730 0.20408 0.10280 3.63541
QUA (3) 0.20042 0.19010 0.18941 0.18940

σ 0.05219 0.00130 0.00015 0.00020 1.18020
ELE (18) 0.00505 0.00497 0.00486 0.00479

σ 0.00007 0.00021 0.00013 0.00017 7.82954
TRE (15) 0.40564 0.38500 0.36876 0.39916

σ 0.10046 0.01660 0.02252 0.17031 1.07788
BAS (16) 714.178 709.767 728.983 910.453

σ 24.5729 16.2693 18.7587 55.0068 0.36862

MGGP
Evals/vars 3000 5000 7000 11000 ms/eval
ABA(8) 2.09448 2.09005 2.15677 2.09146

σ 0.01536 0.00939 0.27578 0.01209 68.9318
MPG6 (5) 2.82620 2.79916 2.76916 2.78887

σ 0.03991 0.05446 0.04314 0.08218 19.0408
MPG8 (7) 2.77983 2.79353 2.74484 2.79120

σ 0.05648 0.06879 0.04656 0.06131 21.7090
FRD (5) 1.19303 1.10039 1.16372 1.11400

σ 0.08375 0.03939 0.07745 0.03803 56.9523
LAS (4) 7.18401 7.27544 6.62436 6.91258

σ 0.43145 0.31578 0.37549 0.36189 49.4215
CPU (6) 78.3732 81.5594 75.6617 68.5437

σ 50.6581 41.5579 6.05547 32.4190 42.4149
PLA (2) 1.36655 1.32200 1.30754 1.31548

σ 0.02762 0.01607 0.01867 0.01511 179.986
QUA (3) 0.19185 0.19101 0.19196 0.19195

σ 0.00143 0.00160 0.00097 0.00222 82.7172
ELE (18) 0.00245 0.00235 0.00685 0.00504

σ 0.00021 0.00008 0.01827 0.00676 107.327
TRE (15) 0.21615 0.21601 0.23694 0.21140

σ 0.00837 0.00309 0.09619 0.00361 100.430
BAS (16) 1437.11 941.210 887.302 962.363

σ 3232.07 487.200 66.2986 392.300 3.87404

4. CONCLUSIONS
We applied QILMuGP in set of 11 regression benchmarks,

and it was found that QILMuGP greatly improve the ac-
curacy when comparing to its simplified version (QILGP);

Table 2: Main results of QILGP and QIMuLGP for
test set.

QILGP
Evals/vars 3000 5000 7000 11000 ms/eval
ABA(8) 2.49880 2.42167 2.33994 2.30975

σ 0.10909 0.07016 0.06592 0.08731 0.97413
MPG6 (5) 5.65584 4.84559 4.30004 3.82211

σ 0.66805 0.35753 0.54516 0.60763 0.12580
MPG8 (7) 5.02799 4.48504 4.19458 3.72854

σ 0.52746 0.58040 0.64397 0.71112 0.13271
FRD (5) 3.83546 3.40657 3.20121 2.80673

σ 0.16641 0.18097 0.13782 0.08024 0.30340
LAS (4) 28.9468 28.1398 26.0149 22.9493

σ 1.91894 2.34428 2.53016 2.14484 0.24450
CPU (6) 74.1313 71.0203 69.7652 57.5957

σ 15.5803 14.0342 16.3019 8.33990 0.08650
PLA (2) 3.17037 2.82697 2.68247 2.39313

σ 0.16257 0.20336 0.10046 0.12619 0.33500
QUA (3) 0.18977 0.18946 0.18948 0.18952

σ 0.00643 0.00635 0.00635 0.00631 0.46000
ELE (18) 0.58902 1.16181 1.16172 2.31833

σ 1.30531 2.58649 2.58656 5.17306 3.54139
TRE (15) 0.33768 0.31326 0.30514 0.29105

σ 0.03757 0.04039 0.04268 0.03810 0.32467
BAS (16) 844.192 757.278 748.243 732.011

σ 26.4487 68.6481 35.7884 86.1586 0.13319

QIMuLGP
Evals/vars 3000 5000 7000 11000 ms/eval
ABA(8) 2.15181 2.12817 2.14707 2.13025

σ 0.08167 0.08105 0.10566 0.08106 11.6134
MPG6 (5) 2.87843 2.81456 2.77730 2.74637

σ 0.24769 0.20421 0.22262 0.25929 3.04560
MPG8 (7) 2.88234 2.81248 2.81635 2.76679

σ 0.38581 0.36920 0.35363 0.35807 3.85343
FRD (5) 2.06512 1.88007 1.70563 1.52325

σ 0.13197 0.18702 0.10826 0.09174 6.93420
LAS (4) 10.5812 9.48600 9.17668 7.82286

σ 2.01984 1.62191 1.90272 1.60768 6.38325
CPU (6) 94.6812 61.6998 178.479 148.720

σ 107.974 33.4788 248.655 218.108 2.90633
PLA (2) 1.51029 1.50002 1.49180 1.48186

σ 0.04283 0.04069 0.04147 0.05259 8.90900
QUA (3) 0.19564 0.19032 0.35561 0.19337

σ 0.01749 0.00785 0.37354 0.00917 8.25233
ELE (18) 0.00695 0.00266 0.00259 0.00390

σ 0.00923 0.00009 0.00006 0.00302 63.2082
TRE (15) 0.23948 0.23853 0.23182 0.22692

σ 0.04567 0.04297 0.04221 0.04040 52.4000
BAS (16) 737.169 747.094 984.207 780.099

σ 87.4307 39.7709 543.770 79.8790 1.85350

and MGGP obtained slightly better results than QILMuGP,
however using twice the computational effort.
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