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 State-of-the-art video coding technologies such as H.265/HEVC 
employ in-loop denoising filters.

 We have developed a new type of in-loop denoising filter with 
Genetic Programming (GP), which is heavily nonlinear and content-
specific.

 To boost the evolution, GPGPU is utilized in filter evaluation process.

 Proposed method yielded better denoising filter in 100x less time.

 The bit rate reduction of 1.492-2.569% was achieved against the 
reference software of H.265/HEVC.

Summary
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A Leap from Linear Denoising Filter
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Denoising Filter Support
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Nodes used by our Filter

 Terminal nodes
I:       pixel value of p
Ixx:  (pxx + qxx) / 2,
Dxx: (pxx – qxx) / 2,.
Ils: least-square restored value, a linear combination of I, I00… I11 with 
offset.
x, y: horizontal and vertical coordinate of the pixel.
value: immediate values such as “0.3”.

 Functional nodes
min, max, average, abs, /, *, +,  −,
exp, pow, log, sqrt, sin, cos, tan, asin, acos, atan,
sinh, cosh, tanh, conditional branch
In addition, followings are defined
and(a, b) := (a>=0 && b>=0) ? (a+b)/2 : −(|a|+|b|)/2,
or(a, b) := (a>=0 || b>=0) ? (|a|+|b|)/2 : −(|a|+|b|)/2,
xor(a, b) := (ab<=0) ? (|a|+|b|)/2 : −(|a|+|b|)/2.
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Serializations of a Tree

div

add

maxsin

2.0

I20 I01 log

0.5

 Normal expression (or infix notation):
(sin(I20) + max(I01, log(0.5))) / 2

 Lisp S-expression (or prefix notation):
(div (add (sin (I20 ))(max (I01 )(log 0.5))) 2)

 Reverse Polish notation (or postfix notation):
I20 sin I01 0.5 log max add 2.0 div

 We used Reverse Polish notation (as described later).
 The fitness function in the evolution is D+lR, where

 D is the squared sum of the errors between the filtered image and 
original image

 R is the amount of tree information that represents the filter algorithm
 λ is the same Lagrange multiplier as the encoder uses during rate-

distortion optimization process
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GPGPU implementation

div imm add max log imm I01 sin I20 ・・・ ・・・ ・・・ ・・・ (float)0.5(float)2.0

Initial index
position (a)

・・・

End of individual
(Index=0) (b)

1024bytes

Immediate
Values (c)

4 bytes1 byte

Beginning of array End of array

・・・

 We convert the tree in 
Reverse Polish Notation 
(RPN) prior to the evaluation.

 Linearized instructions are 
stuffed from the middle of 
the array (a) toward the 
beginning.

 Immediate values are picked 
out and stuffed from the end 
(c).

 Filter evaluation procedure is like following:
for (index = 0; index < array_length; index++) {

switch (funcIDs[index]) {
case add: a=pop(); b=pop(); push(a+b); break;
case sin: a=pop(); push(sin(a)); break;
case imm: push(<the value>); break;
case I: push(I); break;
case I00: push(I00); break;
…

}
}
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Simulation Conditions

CPU: Intel Core i7-3960X Extreme Edition, C2 stepping

Clock rate: 3.3GHz

Cores: 6 (one core is used for the CPU-experiment)

Hyper threading: on

Memory: 64 GB
OS: Ubuntu Linux 12.04.2 LTS x86_64 Desktop Edition

GPU: NVIDIA GeForce GTX 690

CUDA capability: 3.0

CUDA Cores: 1536

GPU Clock rate: 1.020 GHz

Global memory: 2048 MB

L2 Cache Size: 512 KB
CUDA: Driver version: 5.0.35, x86_64

SDK/Toolkit version: 5.0.35
C++ Compiler (as the backend for nvcc):

Intel C++ Compiler version: 12.1.5 20120612

BQTerrace (1920x1080)

RaceHorces (416x240)

BQMall (832x480)

Video sequences used
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CPU vs. GPU Comparison

Time [sec] Speed-up (vs.CPU)

CPU (1 core) 0.336489

GPU 0.002674 125.8x

 Filter (of 121 nodes) evaluation time over BQMall (832x480)
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Coding Performance Comparison
(vs. original H.265/HEVC)

HM-7.2-3164 ALF* LS fiter** Propsal

Sequence QP

rate (a)

[bits]

Y-PSNR

[dB]

BD-rate

vs. HM

Y-PSNR

[dB]

BD-rate

vs. HM

filter info

(R) [bits]

total rate

(a+R)[bits]

Y-PSNR

[dB]

BD-rate

vs. HM

BQSquare 22 210,720 41.53 41.54

0.135%

626 211,346 41.71

-1.492%
(ALF off) 27 138,152 37.16 37.17 315 138,467 37.27

32 88,288 33.30 33.33 329 88,617 33.46

37 55,048 29.65 29.70 418 55,466 29.93

BQSquare 22 210,944 41.53

-0.022%

41.54

0.28%

520 211,464 41.69 -1.437%

(ALF on) 27 138,352 37.16 37.17 445 138,797 37.30 (vs.ALFon)

32 88,504 33.33 33.35 279 88,783 33.48 -1.455%

37 55,392 29.71 29.72 315 55,707 29.95 (vs.ALFoff)

RaceHorses 22 174,448 42.19 42.30

-1.202%

1195 175,643 42.47

-2.569%
(ALF off) 27 109,264 37.97 38.10 698 109,962 38.18

32 63,848 34.08 34.21 750 64,598 34.35

37 34,696 30.57 30.71 536 35,232 30.86

RaceHorses 22 174,936 42.26

-1.755%

42.29

0.428%

321 175,257 42.36 -0.843%

(ALF on) 27 109,536 38.12 38.14 36 109,572 38.13 (vs.ALFon)

32 64,128 34.26 34.26 376 64,504 34.39 -2.580%

37 34,992 30.73 30.74 236 35,228 30.85 (vs.ALFoff)

Negative values
mean better
performance

HM: H.265/HEVC reference software (used as an anchor)
*ALF: adaptive loop filter (state-of-the-art loop filter)
**LS filter: least square filter. Filter info(R) = 448 bits
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Example of Generated Filter

RaceHorses, QP=22, ALF-off, filter information (R) = 1,195 bits
(add (add (add (add (mul (I ) 0.932803332806 )(mul (I01 ) 0.087968140841 ))(add (mul
(I02 ) −0.051799394190 )(mul (I00 ) 0.095137931406 )))(add (add (mul (I03 ) 
−0.050682399422 )(mul (I04 ) −0.040202748030 ))(add (mul (I05 ) −0.052293013781 ) 
(mul (ave (I02 )(tan (I12 ))) 0.017782183364 ))))(add (add (add (mul (I07 ) 
0.025515399873 ) (mul (I08 ) 0.025515399873 ))(sub (mul (sin (atan (and (I09 )(I21 )))) 
0.016251996160 )(mul (tanh (tanh (tanh (mul (I02 )(asin (log (sinh (sqr (div (mul (I05 ) 
(sqr (div (atan (mul (mul (asin (asin (sqr (I ))))(sqr (sqr (div (I05 ) (I13 )))))(sqr (div (sin 
(I19 )) (I01 )))))(sqr (I01 )))))(I03 )))))))))) 0.005235218443 )))(mul (I29 ) 
−0.005818639882 )))

 A novel method to generate denoising filter that enhances 
the coding performance is proposed.

 GPGPU accelerated the evolution by around 100 times than 
the CPU. 

 Generated filters outperformed least square filter and 
state-of-the-art filter, i.e., ALF.

Conclusion


