
1

GPGPU-Assisted Nonlinear
Denoising Filter Generation

for Video Coding
Seishi Takamura and Atsushi Shimizu

NTT Corporation, Japan

 State-of-the-art video coding technologies such as H.265/HEVC
employ in-loop denoising filters.

 We have developed a new type of in-loop denoising filter with
Genetic Programming (GP), which is heavily nonlinear and content-
specific.

 To boost the evolution, GPGPU is utilized in filter evaluation process.

 Proposed method yielded better denoising filter in 100x less time.

 The bit rate reduction of 1.492-2.569% was achieved against the
reference software of H.265/HEVC.

Summary

2Copyright©2014 NTT corp. All Rights Reserved.

Video Coding Block Diagram

Inter-frame
Prediction

Quantization
Entropy
Coding

－

Video
Input

Compressed
Bitstream

＋

Denoising Filter
(DF, SAO,ALF,etc)

Transform

Inverse
Transform

Inverse
Quantization

Reconstructed
Videos

Intra-frame
Prediction

Target of
evolution

3Copyright©2014 NTT corp. All Rights Reserved.

A Leap from Linear Denoising Filter

Nonlinear
filter

Decoded Frame
(large distortion)

Linear
filter

Restored Frame
(less distortion)

Decoded Frame
(large distortion)

Restored Frame
(much less distortion)

4Copyright©2014 NTT corp. All Rights Reserved.

Denoising Filter Support

p21

p24 p19 p25

p28 p15 p13 p16 p29

p27 p10 p07 p05 p08 p11 p26

p23 p14 p06 p02 p01 p03 p09 p17 p22

p20 p18 p12 p04 p00 p q00 q04 q12 q18 q20

q22 q17 q09 q03 q01 q02 q06 q14 q23

q26 q11 q08 q05 q07 q10 q27

q29 q16 q13 q15 q28

q25 q19 q24

q21

5Copyright©2014 NTT corp. All Rights Reserved.

Nodes used by our Filter

 Terminal nodes
I: pixel value of p
Ixx: (pxx + qxx) / 2,
Dxx: (pxx – qxx) / 2,.
Ils: least-square restored value, a linear combination of I, I00… I11 with
offset.
x, y: horizontal and vertical coordinate of the pixel.
value: immediate values such as “0.3”.

 Functional nodes
min, max, average, abs, /, *, +, −,
exp, pow, log, sqrt, sin, cos, tan, asin, acos, atan,
sinh, cosh, tanh, conditional branch
In addition, followings are defined
and(a, b) := (a>=0 && b>=0) ? (a+b)/2 : −(|a|+|b|)/2,
or(a, b) := (a>=0 || b>=0) ? (|a|+|b|)/2 : −(|a|+|b|)/2,
xor(a, b) := (ab<=0) ? (|a|+|b|)/2 : −(|a|+|b|)/2.

6Copyright©2014 NTT corp. All Rights Reserved.

Serializations of a Tree

div

add

maxsin

2.0

I20 I01 log

0.5

 Normal expression (or infix notation):
(sin(I20) + max(I01, log(0.5))) / 2

 Lisp S-expression (or prefix notation):
(div (add (sin (I20))(max (I01)(log 0.5))) 2)

 Reverse Polish notation (or postfix notation):
I20 sin I01 0.5 log max add 2.0 div

 We used Reverse Polish notation (as described later).
 The fitness function in the evolution is D+lR, where

 D is the squared sum of the errors between the filtered image and
original image

 R is the amount of tree information that represents the filter algorithm
 λ is the same Lagrange multiplier as the encoder uses during rate-

distortion optimization process

7Copyright©2014 NTT corp. All Rights Reserved.

GPGPU implementation

div imm add max log imm I01 sin I20 ・・・ ・・・ ・・・ ・・・ (float)0.5(float)2.0

Initial index
position (a)

・・・

End of individual
(Index=0) (b)

1024bytes

Immediate
Values (c)

4 bytes1 byte

Beginning of array End of array

・・・

 We convert the tree in
Reverse Polish Notation
(RPN) prior to the evaluation.

 Linearized instructions are
stuffed from the middle of
the array (a) toward the
beginning.

 Immediate values are picked
out and stuffed from the end
(c).

 Filter evaluation procedure is like following:
for (index = 0; index < array_length; index++) {

switch (funcIDs[index]) {
case add: a=pop(); b=pop(); push(a+b); break;
case sin: a=pop(); push(sin(a)); break;
case imm: push(<the value>); break;
case I: push(I); break;
case I00: push(I00); break;
…

}
}

8Copyright©2014 NTT corp. All Rights Reserved.

Simulation Conditions

CPU: Intel Core i7-3960X Extreme Edition, C2 stepping

Clock rate: 3.3GHz

Cores: 6 (one core is used for the CPU-experiment)

Hyper threading: on

Memory: 64 GB
OS: Ubuntu Linux 12.04.2 LTS x86_64 Desktop Edition

GPU: NVIDIA GeForce GTX 690

CUDA capability: 3.0

CUDA Cores: 1536

GPU Clock rate: 1.020 GHz

Global memory: 2048 MB

L2 Cache Size: 512 KB
CUDA: Driver version: 5.0.35, x86_64

SDK/Toolkit version: 5.0.35
C++ Compiler (as the backend for nvcc):

Intel C++ Compiler version: 12.1.5 20120612

BQTerrace (1920x1080)

RaceHorces (416x240)

BQMall (832x480)

Video sequences used

9Copyright©2014 NTT corp. All Rights Reserved.

CPU vs. GPU Comparison

Time [sec] Speed-up (vs.CPU)

CPU (1 core) 0.336489

GPU 0.002674 125.8x

 Filter (of 121 nodes) evaluation time over BQMall (832x480)

42.6

42.7

42.8

42.9

43.0

43.1

 10 100 1000 10000 100000 1e+06

L
a

g
ra

n
g

ia
n

 c
o

s
t

fu
n

c
ti
o

n
 [

/p
e

l]
)

Evolution time [sec]

CPU 1

CPU 2

GPU 1

GPU 2

 Filter evolution speed for BQMall (832x480)

Better
fitness

100x time difference

10Copyright©2014 NTT corp. All Rights Reserved.

Coding Performance Comparison
(vs. original H.265/HEVC)

HM-7.2-3164 ALF* LS fiter** Propsal

Sequence QP

rate (a)

[bits]

Y-PSNR

[dB]

BD-rate

vs. HM

Y-PSNR

[dB]

BD-rate

vs. HM

filter info

(R) [bits]

total rate

(a+R)[bits]

Y-PSNR

[dB]

BD-rate

vs. HM

BQSquare 22 210,720 41.53 41.54

0.135%

626 211,346 41.71

-1.492%
(ALF off) 27 138,152 37.16 37.17 315 138,467 37.27

32 88,288 33.30 33.33 329 88,617 33.46

37 55,048 29.65 29.70 418 55,466 29.93

BQSquare 22 210,944 41.53

-0.022%

41.54

0.28%

520 211,464 41.69 -1.437%

(ALF on) 27 138,352 37.16 37.17 445 138,797 37.30 (vs.ALFon)

32 88,504 33.33 33.35 279 88,783 33.48 -1.455%

37 55,392 29.71 29.72 315 55,707 29.95 (vs.ALFoff)

RaceHorses 22 174,448 42.19 42.30

-1.202%

1195 175,643 42.47

-2.569%
(ALF off) 27 109,264 37.97 38.10 698 109,962 38.18

32 63,848 34.08 34.21 750 64,598 34.35

37 34,696 30.57 30.71 536 35,232 30.86

RaceHorses 22 174,936 42.26

-1.755%

42.29

0.428%

321 175,257 42.36 -0.843%

(ALF on) 27 109,536 38.12 38.14 36 109,572 38.13 (vs.ALFon)

32 64,128 34.26 34.26 376 64,504 34.39 -2.580%

37 34,992 30.73 30.74 236 35,228 30.85 (vs.ALFoff)

Negative values
mean better
performance

HM: H.265/HEVC reference software (used as an anchor)
*ALF: adaptive loop filter (state-of-the-art loop filter)
**LS filter: least square filter. Filter info(R) = 448 bits

11Copyright©2014 NTT corp. All Rights Reserved.

Example of Generated Filter

RaceHorses, QP=22, ALF-off, filter information (R) = 1,195 bits
(add (add (add (add (mul (I) 0.932803332806)(mul (I01) 0.087968140841))(add (mul
(I02) −0.051799394190)(mul (I00) 0.095137931406)))(add (add (mul (I03)
−0.050682399422)(mul (I04) −0.040202748030))(add (mul (I05) −0.052293013781)
(mul (ave (I02)(tan (I12))) 0.017782183364))))(add (add (add (mul (I07)
0.025515399873) (mul (I08) 0.025515399873))(sub (mul (sin (atan (and (I09)(I21))))
0.016251996160)(mul (tanh (tanh (tanh (mul (I02)(asin (log (sinh (sqr (div (mul (I05)
(sqr (div (atan (mul (mul (asin (asin (sqr (I))))(sqr (sqr (div (I05) (I13)))))(sqr (div (sin
(I19)) (I01)))))(sqr (I01)))))(I03)))))))))) 0.005235218443)))(mul (I29)
−0.005818639882)))

 A novel method to generate denoising filter that enhances
the coding performance is proposed.

 GPGPU accelerated the evolution by around 100 times than
the CPU.

 Generated filters outperformed least square filter and
state-of-the-art filter, i.e., ALF.

Conclusion

