NTT (©)

GPGPU-Assisted Nonlinear
Denoising Filter Generation
for Video Coding

Seishi Takamura and Atsushi Shimizu
NTT Corporation, Japan

N

Innova tive R&D by NTT

Summary

» State-of-the-art video coding technologies such as H.265/HEVC
employ in-loop denoising filters.

> We have developed a new type of in-loop denoising filter with

Genetic Programming (GP), which is heavily nonlinear and content-

specific.

To boost the evolution, GPGPU is utilized in filter evaluation process.

Proposed method yielded better denoising filter in 100x less time.

The bit rate reduction of 1.492-2.569% was achieved against the
reference software of H.265/HEVC.

YV V V

Video Coding Block Diagram

N
Video Compressed
Input Bitstream
(=) Transform [Quantization Entropy
Coding
Inverse
Quantization
v
Inverse
Transform
+
CP Target of
. : | evolution
Intra-frame Denoising Filter
O Prediction (DF, SAO,ALF,etc)
O\Oe Inter-frame Reconstructed
Prediction Videos

Copyright©2014 NTT corp. All Rights Reserved.

A Leap from Linear Denoising Filter

nnnnnn ive R&D by NTT

T
Decoded Frame Restored Frame Decoded Frame Restored Frame
(large distortion) (less distortion) (large distortion) (much less distortion)

o— | Linear
' filter

o g ta h f;\(\\\ /

U
Nonlinear 0
fiter. /T 6%

° ® v

€xp (oY

i

@ NTT Copyright©2014 NTT corp. All Rights Reserved.

Denoising Filter Support

| P St arE)
R = .xlfilﬂmwm
v r M/

N

nnovative R&D by NTT

p20

pO0| p |g00|q04(ql2{ql8

q20

q03|901|{qg02|q06|qgld|g23

g2l

Copyright©2014 NTT corp. All Rights Reserved.

Nodes used by our Filter

> Terminal nodes

I: pixel value of p

Ixx: (pxx + gxx) / 2,

Dxx: (pxx — gxx) / 2,.

Ils: least-square restored value, a linear combination of I, I00--- I11 with
offset.

X, Y: horizontal and vertical coordinate of the pixel.

value: immediate values such as “0.3"

» Functional nodes

min, max, average, abs, /, *, +, —,

exp, pow, log, sqrt, sin, cos, tan, asin, acos, atan,
sinh, cosh, tanh, conditional branch

In addition, followings are defined

and(a, b) 1= (a>=0 && b>=0) ? (a+b)/2 : —(|al+|b])/2,
or(a, b) :=(a>=0 || b>=0) ? ([a]+|b[)/2 : —=(]al+|b])/2,
xor(a, b) := (ab<=0) ? (|a|+|b])/2 : —(]al|+|b])/2.

@ NTT Copyright©2014 NTT corp. All Rights Reserved.

Serializations of a Tree

» Normal expression (or infix notation):
(sin(I20) + max(I01, log(0.5))) / 2

> Lisp S-expression (or prefix notation):
(div (add (sin (120))(max (I01)(log 0.5))) 2)

> Reverse Polish notation (or postfix notation):
120 sin 101 0.5 log max add 2.0 div

» We used Reverse Polish notation (as described later).
> The fitness function in the evolution is D+AR, where
» D is the squared sum of the errors between the filtered image and
original image
» R is the amount of tree information that represents the filter algorithm
> A is the same Lagrange multiplier as the encoder uses during rate-
distortion optimization process

@ NTT Copyright©2014 NTT corp. All Rights Reserved. 6

GPGPU implementation

| [
End of individual Initial index Immediate
(Index=0) (b) position (a) /\/_\alues (c)
div [imm|add|max| log [imm| 101 | sin | 120 | == - / / . (float)2.0 (float)05
<> 1byte . <— 4dbytes —>
1024bytes

Beginning of array

> We convert the tree in
Reverse Polish Notation
(RPN) prior to the evaluation.

> Linearized instructions are
stuffed from the middle of
the array (a) toward the
beginning.

» Immediate values are picked
out and stuffed from the end

(c).
®) NTT

End of array

» Filter evaluation procedure is like following:
for (index = 0; index < array_length; index++) {
switch (funcIDs[index]) {
case add: a=pop(); b=pop(); push(a+b); break;
case sin: a=pop(); push(sin(a)); break;
case imm: push(<the value>); break;
case |: push(l); break;
case 100: push(l00); break;

Copyright©2014 NTT corp. All Rights Reserved. 7

Simulation Conditions

N

nnovative R&D by NTT

CPU: Intel Core i7-3960X Extreme Edition, C2 stepping
Clock rate: 3.3GHz

Cores: 6 (one core is used for the CPU-experiment)
Hyper threading: on

Memory: 64 GB

Video sequences used

OS: Ubuntu Linux 12.04.2 LTS x86_64 Desktop Edition

GPU: NVIDIA GeForce GTX 690
CUDA capability: 3.0

CUDA Cores: 1536

GPU Clock rate: 1.020 GHz
Global memory: 2048 MB

L2 Cache Size: 512 KB

CUDA: Driver version: 5.0.35, x86_64
SDK/Toolkit version: 5.0.35

C++ Compiler (as the backend for nvcc):
Intel C++ Compiler version: 12.1.5 20120612

RaceHorces (416x240)

®) NTT

Copyright©2014 NTT corp. All Rights Reserved.

CPU vs. GPU Comparison

> Filter (of 121 nodes) evaluation time over BQMall (832x480)

Time [sec] |Speed-up (vs.CPU)

CPU (1 core)

0.336489

GPU

0.002674 125.8x

> Filter evolution speed for BQMall (832x480)

43.1, ,
CPU1 —
5 | 1 CPU2 |
430 ——F——— -4 ,,,,,,,,,,,,,, GPU 1
429 Lo ,,,
% % *
N
42.8 | — 100x time difference
v A2.7) Lo
Better
fitness 42.6 : 1 1 1
10 100 1000 10000 100000 1le+06

Evolution time [sec]

Copyright©2014 NTT corp. All Rights Reserved.

Coding Performance Comparison
__(vs. original H.265/HEVC)

<

Innovative R&D by NTT

Negative values
mean better

- performance

HM-7.2-3164 | ALF* LS fiter** Propsal
rate (a) | Y-PSNR |BD-rate| Y-PSNR | BD-rate [filter info| total rate | Y-PSNR BD-rate
Sequence QP | [bits] | [dB] |vs.HM| [dB] |vs. HM |(R) [bits]|(a+R)[bits]| [dB] vs. HM
BQSquare 22| 210,720 41.53 41.54 626 211,346| 41.71
(ALF off) 27| 138,152| 37.16 3747 | 0 1250 315| 138,467| 37.27 1490
32| 88,288| 33.30 33.33 320 88,617| 33.46
37| 55,048| 29.65 29.70 418 55466/ 29.93
BQSquare 22| 210,944 | 41.53 41.54 520 211,464| 41.69 -1.437%
s.ALFon
(ALF on) 27 138,352 37.16 | 1oo0el 3717 | o 5o, 445/ 138,797| 37.30 | (v)
32| 88,504| 33.33 33.35 279 88,783 33.48 -1.455%
37| 55392| 29.71 29.72 315 55,707| 29.95 | (vs.ALFoff)
RaceHorses 22| 174,448| 42.19 42.30 1195 175,643| 42.47
(ALF off) 27| 109,264 | 37.97 38.10 | 1 »oo0 698 109,962 38.18 5 569%
32| 63,848| 34.08 34.21 750 64,598| 34.35
37| 34,696| 30.57 30.71 536 35,232 30.86
RaceHorses 22| 174,936 | 42.26 42.29 321] 175,257| 42.36 -0.843%
vs.ALFon
(ALF on) 27/ 109536 | 38.12 |, op | 3814 | 00 36| 109,572 38.13 ()
32| 64,128| 34.26 34.26 376| 64,504| 34.39 -2.580%
371 34,992| 30.73 30.74 236| 35228| 30.85 | (vs.ALFoff)

®) NTT

HM: H.265/HEVC reference software (used as an anchor)
*ALF: adaptive loop filter (state-of-the-art loop filter)
**LS filter: least square filter. Filter info(R) = 448 bits

Copyright©2014 NTT corp. All Rights Reserved.

10

Example of Generated Filter

RaceHorses, QP=22, ALF-off, filter information (R) = 1,195 bits

(add (add (add (add (mul (I) 0.932803332806)(mul (I01) 0.087968140841))(add (mul
(I02) —0.051799394190)(mul (I00) 0.095137931406)))(add (add (mul (103)
—0.050682399422)(mul (I04) —0.040202748030))(add (mul (I05) —0.052293013781)
(mul (ave (I02)(tan (I12))) 0.017782183364))))(add (add (add (mul (I07)
0.025515399873) (mul (I08) 0.025515399873))(sub (mul (sin (atan (and (109)(121))))
0.016251996160)(mul (tanh (tanh (tanh (mul (I02)(asin (log (sinh (sgr (div (mul (105)
(sgr (div (atan (mul (mul (asin (asin (sqgr (I))))(sar (sqgr (div (I05) (113)))))(sgr (div (sin
(I19)) (101)))))(sar (101)))))(103)))))))))) 0.005235218443)))(mul (129)
—0.005818639882)))

Conclusion

» A novel method to generate denoising filter that enhances
the coding performance is proposed.

» GPGPU accelerated the evolution by around 100 times than
the CPU.

» Generated filters outperformed least square filter and
state-of-the-art filter, i.e., ALF.

@ NTT Copyright©2014 NTT corp. All Rights Reserved. 11

