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ABSTRACT
While most software automation research concentrates on pro-
grams’ code, we have started investigating if Genetic Improve-
ment (GI) of data can assist developers by automating aspects of
the maintenance of parameters embedded in source code. We ex-
tend recent GI work on optimising compile time constants to give
new functionality and describe the transformation of a GNU C
library square root function into the double precision reciprocal
function, drcp. Multiplying by 1/x (drcp) allows division free di-
vision without requiring the hardware to support division. The
evolution (6 seconds) and indeed the GI dp division (7.14±0.012 nS)
are both surprisingly fast.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering;
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1 CONVENTIONAL DIVISION IS EXPENSIVE
On a modern 3.60GHz desktop double precision multiplication
takes a nanosecond, whereas double precision division takes about
4.0 times as long. For some systems which do not have floating
point division in hardware, e.g. MMM [21], the ratio may be big-
ger. Indeed, even in some cases with hardware division, the ratio
can be large. For example, on the ARM1176JZF-S (an ARM Vector
Floating-Point coprocessor) the ratio is 14.5 [1, VFP 1-19]. Mini-
mal systems, such as for internet-of-things (IoT) or ultra tiny mote
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computers [13] may not have the transistors or the power for con-
ventional hardware division.

We use genetic improvement operating on data to show search
can adapt existing embedded constants to repurpose existing open
source C code to give a software double precision implementa-
tion of reciprocal (drcp). Our table driven drcp takes only 2 Kbytes
(512 × 4bytes), which could be burnt into read-only memory (ROM)
and as such is well within the reach of many mote processors.

Not only can artificial evolution do this, but, when used incon-
junction with multiply, we get a table driven software implementa-
tion of division which on our 3.60 GHz desktop (7.14 ± 0.012 nS) is
only marginally slower than native 64 bit division.

We use the drcp function to show a new capability of GI in soft-
ware maintenance. The source code itself is manually adapted, but
the corresponding lookup table is automatically generated similar-
ily to how software can be maintained when updated values are
required, e.g. better approximations or changes in architecture from
32 bit to 64 bit.

The next section gives the background and shows, whilst Artifi-
cial Intellgence (AI) is increasingly used tomaintain software source
code, there is little research on maintaining numbers embedded
in programs themselves. For this particular example (sqrt{drcp),
Section 3 gives a brief introduction to iteratively finding a root of a
mathematical equation using Sir Isaac Newton and Joseph Raph-
son’s iterative solver. A short introduction to CMA-ES is provided in
Section 4. Whilst Section 5 describes the start point for this example:
a GNU C mathematics library routine, sqrt (which uses Newton-
Raphson), and how we use CMA-ES to evolve the data within it
to give a new double precision reciprocal function, drcp. Note the
evolved drcp does not use double precision division but can be used
to replace it. The discussion (Section 6) shows that our GI division
is accurate, and also considers possible future work. Finally, in Sec-
tion 7 we conclude that for some low resource computers (such as
for Internet of Things IoT [6] or approximate computing [55, 69])
the Genetic Improvement (GI) approach may help and that we have
demonstrated evolutionary computing (EC) tools are opening up
new approaches to automating software maintenance.

2 BACKGROUND:
AI FOR SOFTWARE MAINTENANCE

Although computing is without doubt the success story of the sec-
ond half of the twentieth century, at the beginning of the third
millennium we are faced with an IT industry which remains labour
intensive but not in the manufacture of the things but in look-
ing after intangible IP (intellectual property), principally software.
The lifetime cost of solid things, i.e. hardware, has fallen exponen-
tially [54]. However, there has been no such dramatic change in
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the cost of intangibles. Whilst production of hardware has been
automated, software has not been automated and remains labour-
intensive. These differences between computers and the software
that runs on them has lead to very different maintenance regimes.

Forty years ago there were a (relatively) small number of large
computers and teams of technicians who performed regular “pre-
ventative maintenance” on them. Those days are long since past.
Nowadays the number of computers is vast, and their components
so tiny and interconnected that routine maintenance is no longer
attempted. Instead whole computers (never mind components) are
simply discarded when (part of them) fails. Contrast this with their
software.

Initially, computer hardware was very diverse, demanding new
software each time new hardware was commissioned. The advent
of high-level languages and near monopolies in computer manufac-
ture has lead to increasingly large volumes of software which can
and has been reused. This led to “immortal software” [45, page 30]
which has long outlived the computers it was originally developed
for. Surprisingly, the consolidation into a few hardware and operat-
ing system environments has not lead to a similarly stable software
industry. The economic pressure to be “first to market” has forced
hardware innovation to be concentrated in a few computer hard-
ware companies with fixed upgrade tram lines leading to users
being “locked in” [57]. However, for most software, the race to be
first continues to lead to great diversity in user programs.

The lack of automation in the software industry, online deploy-
ment and the economic necessity for software to be produced
quickly, has led to the rise of continuous deployment where new
software is inflicted on the user as quickly as possible. Innova-
tions in software production have fed the race to be first rather
than increasing software quality. The lack of automation and the
longevity of software have led to software maintenance becoming
the dominant cost of computing [14, 64].

Search based software engineering (SBSE) [25] uses AI tools
to tackle software engineering problems. Increasingly SBSE is be-
ing used not just to find solutions to software problems, but to
help software writers and maintainers by increasing the level of
automation [23, 50],[2]. Rather than generating totally new pro-
grams [28, 29, 46], we are now seeing AI being used to automatically
fix bugs [22, 47, 50] and improve existing software [71],[39, 61]. Ge-
netic Improvement (GI) [59–62] has been used to optimise run
time [39, 72], energy [10, 12, 66] and memory [73] efficiency, auto-
matically importing functionality from one program into another
[7, 49], growing new functionality and grafting it into another
[24, 27, 31, 38] and indeed porting to new hardware [37]. GI on
source code systems include GIN [70],[9] (Java), PyGGI [5] (multi-
ple languages) and GISMOE [32] (C). Although GI can be applied
to byte code [58], assembler [65] and indeed machine code [67],
mostly GI has been applied to program source code, with little
attention being paid to numbers embedded in software.

As well as external data to be processed, typically programs
contain not just computer instructions, but also data. These may be
float, int values or other types. For example, the GNU C library
contains more than a million integers, see Figure 1 (also [42]).1 The
1In addition to 1029 floating point constants, the PowerPC double precision sqrt .c
code contains 41 integer constants. E.g. logical values, error codes, array sizes and
hexadecimal bit masks.
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Figure 1: Distribution of integer constants in the GNU C
library version 2.30 released 1 August 2019 (including test
suite). Note log scales. It contains 967 533 lines of C code,
which contain in total 1 234 449 integer constants. Zero is the
most commonoccurring in various formats a total of 152 189
times, followed by 1 (33 985) 2 (8 594) and -1 (8 324). Every in-
teger between -50 and 40 956 occurs at least once. There are
118 386 distinct integer constants. (To avoid overlap, positive
and negative values are slightly offset vertically.)

numbers can be integral to the source code itself, but may also relate
to the problem the program is solving, and as such may be subject
to change just like the rest of the program’s environment [36],
and so may need to be updated. The need to maintain data within
software, as well as the code itself, has been recognized for a long
time (Martin and Osborne, 1983 [52, Section 6.8]).

Although maintenance is the dominant cost of computing, a
recent survey [53] starts by saying “a relatively small amount [of
SBSE research] is related to softwaremaintenance”, whilst de Freitas
and de Souza [15] do not give a break down of the search based
software engineering literature on software maintenance. Indeed
there is little SBSE research on maintaining embedded numbers.

There is a little research on tuning of embedded parameters,
Wu et al. [73]’s Deep Parameter Optimisation (DPO) work being
the first example. They used DPO to adjust a few parameters to
reduce runtime and memory. However, unlike DPO [11, 68, 73], we
focus on adapting many numerical values to give better programs
or indeed (as here) new functionality.

The ViennaRNA package [48] uses more than 50 000 free energy
values. Recently we showed that genetic improvement can adapt
these 50 000 int values to find a new program which on thousands
of real examples gave predictions which were on average 11% more
accurate [35].

We showed that evolution could update thousands of embedded
constants to give new functionality [35, 43]. In [43] we argued
that the technique could be widely applied and have applied it
to generating log2 [44] and 1√

x
[33]. We now use it to evolve a

double precision division operator without division. We provide
double precision division, x/y, as x × (1/y), i.e. x × drcp(y). Where
drcp(x) = 1/x is the double precision reciprocal or invert function.
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Figure 2: First iteration of Newton-Raphson to approximate
root f (x)=0 of a function, thick blue line. f ′(x1) is the deriv-
ative of f at x1 (thin red line). Following it gives x2 where it
crosses the horizontal line y = 0, x2 = x1 −

f (x1)
f ′(x1)

. Here x2 is
closer than x1 to the root. The next iteration starts at x2 to
give x3 = x2 −

f (x2)
f ′(x2)

. In this example x3 over shoots but x4 is
close and x5 is almost exact.

Figure 3: IEEE 754 Double-precision floating-point format.
Notice sign (bit 63, light blue) is zero for positive numbers.

3 NEWTON-RAPHSON
Next we describe the mathematical background used by the open
source software (sqrt, Section 5) we use as a start point for GI.

Newton-Raphson is an iterative way of finding the roots (zero
crossing points) for continuous differentiable functions, see Fig-
ure 2. Under ideal conditions it converges quadratically fast. Thus if
we start with an 8 bit approximation, the next iteration is accurate
to 16 bits, the second 32 bits and the third to 64 bits. Since double
precision (see Figure 3) gives 52 bit accuracy, only three Newton-
Raphson cycles are needed. Classically, each Newton-Raphson it-
eration includes testing to see if the new approximation is close
enough and stopping when the error is small enough. For speed, in
the GNU e_sqrt.c code, the test is omitted and it simply does three
iterations and stops.

Using Newton-Raphson to find f (x) = 0, see Figure 2. We need
a guess for the initial value for x , x1. The initial error is:

error = f (x1) − 0

The next estimate, x2, is given by updating x1 by the error divided
by the gradient (derivative) of f (x), f ′(x)

x2 = x1 − error/f ′(x1)

= x1 −
f (x1)
f ′(x1)

Generalising, for the (n + 1)th step

xn+1 = xn −
f (xn )

f ′(xn )

The GNU C library sqrt code contains a table of 512 (29) values
for x1 (and another 512 holding initial values for the derivative, see
next paragraph). The table is indexed by a 9-bit integer (0. . . 511) ex-
tracted using bit shifts and masks from the double format number,
Figure 3. Each start point x1 is accurate to within eight bits and so
three iterations will give double precision accuracy. (Since initially
only 8-bit precision is needed, the 512 pairs of initial values can be
stored as float rather than double.)

In the case of sqrt f (x) = x2 − a. Note when f (x) = 0 then
x = a

1
2 . To use multiplication instead of division, the GNU C library

sqrt code keeps an estimate of 1
f ′(x ) which is also updated at each

Newton-Raphson iteration.
In our case (the reciprocal function) f (x) = x−1 − a and so

f ′(x) = −x−2 :

f (xn )

f ′(xn )
= −f (xn )x

2
n

= −

(
x−1n − a

)
x2n

= −xn + a x
2
n (1)

Since x2 is easily calculated, for drcp (unlike sqrt) we do not main-
tain an estimate for the reciprocal of the derivative. Therefore this
part of e_sqrt.c was removed and x2 was used instead (see Sec-
tion 5.1).

4 COVARIANCE MATRIX ADAPTION -
EVOLUTION STRATEGY (CMA-ES)

CMA-ES is an evolutionary algorithm used to solve n-dimensional
continuous numerical problems. It has been shown to work for
global and local optimization [20]. The algorithm evolves a popu-
lation represented as a covariance matrix around a centroid. The
centroid guides the evolutionary search by evolving a probability
distribution. A standard deviation that is continously and automat-
ically updated during the run guides the mutation. The crossover
happens by combining several individuals to new points in the co-
variance matrix. CMA-ES implicitly implements the crossover and
mutation operators as they are directly tied to the core covariance
matrix. CMA-ES does not require extensive parameter tuning, as
all values for the operators are updated at regular intervals around
the centroid [20].

CMA-ES can be provided with an initial configuration, such as
the initial standard deviation and centroid. This only serves to speed
up the algorithm to moving closer to an already expected or known
optimum [20].



GECCO ’20 Companion, July 8–12, 2020, Internet W. B. Langdon and Oliver Krauss

5 EVOLVING 1/x FROM GNU POWERPC
√
x

We use an existing table driven implementation of the square root
function (Figure 4 left) and use genetic improvement to evolve the
reciprocal function (Figure 4 right). This is achieved by mutating
the constant values in the chosen code for square root.

The GNU C library (release 31 Jan 2019 glibc-2.29) was used.2
It contains multiple implementations of the square root function
(sqrt). As before [43], we selected sysdeps/powerpc/fpu from the
PowerPC implementations as it uses table lookup [51] (Figure 5).
Again we adapted the GNU open source C code by hand and used
Hansen’s CMA-ES [20] (see previous Section 4) to evolve the literals
supplied by GNU for the square root function so that the code now
calculates drcp.

5.1 Manual changes
A few small codemodifications are needed before running evolution
on the data table (contrast Figures 5 and 6).

• Negative numbers are caught before entering the main code.
However, unlike sqrt, an error is not raised but instead −x is
passed to the main code and its result is negated. Thus, the
main code does not deal with negative numbers.

• The construction of the nine bit indexing operation is essen-
tially unchanged, but it must take into account that the table
contains 512 floats not 512 pairs of floats (Figure 6).

• The code to maintain the estimate of the reciprocal of the
derivative can be commented out.

• The new formula (Eq. 1) for the Newton-Raphson step is
used three times.

• The GNU sqrt code deals with the exponent separately from
the fractional (mantissa) part (Figure 3). To take the square
root of the exponent, it is divided by two using a 1 bit shift
right (left part Figure 5). For x−1 the exponent part must be
negated. Since the IEEE 754 standard uses 11 unsigned bits
to represent the exponent, the new code subtracts it from
the mid point (1023 = 211/2 − 1) giving the exponent of
the result (left part Figure 6). That is, the new code replaces
masks and shift by masking and subtraction.

• The sqrt code deals with denormalised numbers (i.e. when
the exponent part is zero, x < 2−1023, see Figure 3) by multi-
plying by a large number and recursively calling itself and
then adjusting the returned value appropriately. Except for
using 254, the new drcp is identical.
It multiplies the tiny value x by 254. The drcp code is recur-
sively called with the new (now normalised double precision
value). The output will be 2−54 times too small and so the cor-
rect final value is obtained by multiplying by 254. That is, the
only code change is that the e_sqrt.c macros two108 = 2108
and twom54 = 2−54 are both replaced by two54 = 254.

5.2 Automatic changes to data table using CMA-ES
The GNU __t_sqrt table contains 512 pairs of floats. The first of
each pair was used as the starting points when evolving the 512
floats in the new table, see horizontal axis Figure 9. The float values

2 https://ftp.gnu.org/gnu/glibc/glibc-2.29.tar.gz

found by CMA-ES are shown by the vertical axis of Figure 9, also
Figure 10.

CMA-ES was downloaded from https://github.com/cma-es/
c-cmaes/archive/master.zip It was set up to fill the table of 512
floats one at a time. In all cases, the initial mutation step size used
by CMA-ES was set to 3.0 times the standard deviation calculated
from the 512 x1 values in __t_sqrt.

5.2.1 CMA-ES parameters. The CMA-ES defaults
(cmaes_initials.par) are used, except for: the problem size (N=1),
the initial values and mutation sizes are loaded from __t_sqrt (see
previous section), and stopFitness, stopTolFun, stopTolFunHist and
stopTolX, which control run termination, were set to zero to ensure
CMA-ES tries to get a perfect fitness (see next section).

5.2.2 CMA-ES Fitness function. Each time CMA-ES proposes a
double value, it is converted into a float and loaded into the table
at the location that CMA-ES is currently trying to optimise. For
each of the 512 table entries, the fitness function uses three test
points: the lowest value for the table entry, the mid point and the
top most value. For simplicity, all the fitness test points are in the
range 1.0 to 2.0. The invert function drcp that CMA-ES is trying to
create is called (using the updated table) for each fitness test point
and a sub-fitness value calculated with each of the three returned
doubles. The sub-fitnesses are combined by adding them.

Sub-fitness is calculated by taking CMA-ES’s drcp output and in-
verting it (using 1.0/x ). If the evolved value was correct, the answer
would be the same as the test input value. (Effectively the fitness
function is using metamorphic testing [8], which avoids having a
test oracle which knows in advance the desired answer for every
fitness test case.) Sub-fitness is based on the absolute difference
between these. If they are the same or very close, the sub-fitness is 0.
We define “very close” to mean the difference is less than either the
difference calculated when inverting a number very slightly smaller
than CMA-ES’s drcp’s output or when inverting a number very
slightly bigger. “Slightly” meaning to the best double precision accu-
racy, i.e. multiplied or divided by (1 + DBL_EPSILON) = (1 + 2−52).
(DBL_EPSILON in C is the minimal value which when added to 1.0
which results in a different double value.)

If the output from the evolved drcp is not close enough, the
sub-fitness is positive. When drcp is working well the differences
are very small, therefore they are re-scaled for CMA-ES, although
this may not be essential [30]. If the absolute difference is less than
one, its log is taken, otherwise the absolute value is used. However,
in both cases, to prevent the sub-fitness being negative, log of the
smallest feasible non-zero difference DBL_EPSILON is subtracted.

CMA-ES will stop when the fitness is zero, i.e. the errors on all
three test points are close enough to zero.

5.2.3 Restart Strategy. If CMA-ES fails to find a value for which
all three test cases are ok, it is run againwith the same initial starting
position and mutation size, but a new pseudo random number seed.
In 467 cases CMA-ES found a suitable value in one run, but in 39 of
512 cases it was run twice, and in 6 cases three CMA-ES runs were
needed. This shows that the selected fiteness function is robust,
finding the global optimum in all cases. However we still require
some restarts due to the stochastic nature of the approach.
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Figure 4: Left: Double precision square root, sqrt(x),
√
x . Right: Double precision reciprocal, drcp(x), 1/x . Note in both plots the

horizontal axis covers the full range of double precision numbers and the two functions give very different outputs (y-axis).

right shift by 1 bit
Division by 2

sign=0

9 bit index into 512 item table

start x start 1/2x

__t_sqrt

9 bit
index

Figure 5: Left: e_sqrt.c uses right shift of exponent of pos-
itive double (bit 63 = 0) to a) divide exponent by two and
b) merge least significant bit with top 8 bits of fractional
(mantissa) part to give nine bit index. Right: index usedwith
float __t_table containing 512 x1 and 1/2x1 pairs of initial
values for Newton-Raphson iterative solution of

√
x .

1023 − x
Negate by

sign=0

9 bit index into 512 item table

9 bit index into

start x

512 item table

__t_drcp

Figure 6: GI drcp. Left: to negate the exponent of positive
double (11 bit twos complement integer), drcp subtracts it
from 1023. drcp uses the top 9 bits of fractional (mantissa)
part give a nine bit index. Right: index used with float
__t_drcp of initial values for Newton-Raphson iterative so-
lution of 1

x .

It took 6 seconds to run CMA-ES 563 times on one core of a
3.60GHz i7-4790 Intel desktop computer. The search effort is given
in Figures 7 and 8. The values input to CMA-ES and those output
by it are given in Figures 9 and 10.
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Figure 7: CMA-ES is very good at finding 512 new start
points for x−1 when starting with data for x

1
2 . (Mean 45.6 fit-

ness evaluation.) All but 1 of the 51 of the runs which were
restarted (×) are for x > 1.5 indicating some correlation with
change to initial seed value (Figure 9).

5.3 Testing the evolved drcp function
The glibc-2.29 powerPC IEEE754 table-based double sqrt func-
tion claims to produce answers within one bit of the correct solu-
tion. Our drcp also achieved this. On 1 543 tests of large integers
(≈ 1016) designed to test each of the 512 bins three times (min, max
and a randomly chosen point) the largest discrepancy between
1/drcp(x) and x was two, i.e. a maximum fractional error 1.9 10−16
≈ DBL_EPSILON.

The evolved drcp was also tested with 5 120 random numbers
uniformly distributed between 1 and 2 (the largest deviation was
two3), 5 120 random scientific notation numbers and 5 120 random
64 bit patterns. Half the random scientific notation numbers were

32 at the least significant part of IEEE754 double precision corresponds to 4.44 10−16 .
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dashed line). Data as Figure 7.
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Figure 9: Evolved change from sqrt table values (horizontal
axis) to corresponding inv table value (vertical axis). 512 suc-
cessful CMA-ES runs. The diagonal blue dotted line shows
no change, y=x.

negative and half positive. In absolute value, half were smaller than
one and half larger. The exponent was chosen uniformly at random
from the range 0 to |308|.

In one case a random 64 bit pattern corresponded to Not-A-
Number (NAN) and drcp correctly returned NAN. In five cases
random 64 bit pattern corresponded to numbers either bigger than
21023 or smaller than −21023. For these drcp correctly returned 0
(or -0). In most cases drcp returned a double, which when inverted
was its input or within one bit of it. Barring the six special binary
patterns, the maximum deviation was 2, i.e. 4.44 10−16 as a fraction.
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6 DISCUSSION
6.1 Sufficient Testing?
Although it is well-known that testing cannot prove correctness [17],
in keepingwith the IT industry as a whole (indeed the GNU develop-
ers themselves, see Section 6.3), we have sought to demonstrate our
evolved implementation using testing (see Section 5.3). Excluding
tests for exceptions such as denormalised numbers and range errors,
the code is straight through with no loops or branches and drcp (in
the range of interest, 1.0 to 2.0) is monotonic and smooth. We have
shown this main code yields correct double precision answers thou-
sands of times, including covering all 512 data bins multiple times,
including their edges. (Indeed a proof, following Markstein [51],
might be possible.) We can thus be reasonably confident of the GI
code in normal operation.

Although the testing has covered some special cases, it is notice-
able that the GNU mathematics library developers have included
almost as many tests for exceptions as for normal cases. We have
been concerned primarily with normal operation and not attempted
to use the glibc exception handling code. Therefore if our evolved
drcp were to be included in glibc they might well want to satisfy
themselves that non numeric inputs such as nan, +inf and -inf
are also dealt with correctly. Similarly additional testing might be
used when dealing with non-normalised numbers, cf. Section 5.1,
especially as this is the only instance of recursive code.

6.2 Originality, Utility and Scope for
Disruption of Software Engineering

As the literature review in Section 2 makes clear this is an under
explored area and yet Evolutionary Computation (EC) can some-
times rapidly produce useful results (here with a run time of a few
seconds). By working with software maintainers, EC-based AI data
maintenance tools could make a significant dent in the software
maintenance mountain.
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Our evolved double precision division x/y = x × drcp(y) is po-
tentially competitive on processors where division is slow. In par-
ticular, if division is slower than multiplication by a ratio of more
than 8, multiplication by the evolved double precision recipro-
cal, drcp, will be faster than division. For example, there are some
processors (see Section 1) where the time to do double precision
division is more than 14× the time to do double precision multi-
plication, e.g. ARM1176JZF-S [1]. On such hardware x × drcp(y)
would be faster than x/y.

As before [43], we have only updated the read-only data table.
Comments in the GNU PowerPC C source code make the point that
a skilled software designer chose the interleaving of the instructions
to maximise performance on the PowerPC. Since we desire to make
our description as complete as possible for a scientific audience,
cf. Section 5.1, we have gone into perhaps more detail than is needed
and so perhaps given the impression that the Newton-Raphson code
is more complex than it actually is. In practice, the GNU sqrt code
can be easily adapted. Secondly, for speed, the code uses a data-
driven approach for the Newton-Raphson derivative. Both of these
were manual choices by the GNU programmers for the PowerPC.
Future research might investigate using genetic improvement on
the code in order to see if this is optimal on other computers, if the
data-derivative approach should be used in drcp, or if GI can find
other optimisations.

The bulk of software maintenance is routine and tedious, al-
though in some cases it may require highly skilled experts [16,
page 65]. In either case, the available human resources may already
be stretched thin. Thus partial automation via AI can be useful,
even (as is shown in [35]) for high skill requirements.

6.3 Future work:
GI Autoport Test Cases and Test Oracles

The GNU C library includes more than 6000 extensive test suites.
These include the square root test cases, of 599 individual tests. Like
other glibc math functions, they are used for complex numbers (i.e.,
with real and imaginary parts), different precisions (long double,
double, float etc.) and inlined and noninlined code. Just concen-
trating upon testing sqrt() (i.e. double), the tests are executed 1360
times (plus 1348 tests for errors and exceptions). Although AI has
made considerable progress in generating test cases to exercise
code [4, 19] usually this relies on implicit oracles [8, 26, 34, 56, 63]
(such as: does the test cause the code to crash with a null pointer
exception?), or approximate oracles such as: does the output include
strings such as “error”, “problem” or “exception” [18, page 262]? We
have used traditional manual testing to demonstrate our drcp, how-
ever, what if we were to use not just the existing implementation
but the existing test suite and use it to test the new functionality?
How much adaptation of the tests would be need? How much of
this could be automated? Would genetic improvement be able to
evolve existing test cases and their test oracles? The little work on
automatic test case porting [74] and the presence of thousands of
test suites with hundreds tests and their test oracles makes using GI
to transplant glibc test suites a tempting target for future research.

7 CONCLUSIONS
The cost of software maintenance is staggering. Although sup-
port tools are common place, it remains an essentially tedious
error prone manual process with little existing evolutionary com-
puting (EC) research. Indeed, although recognised since the early
1980’s, there is little research on automatic ways to maintain nu-
meric values even though this is an important part of software
maintenance. Figure 1 shows an example of important long lived
software which contains a large number of embedded constants.

Most EC software engineering research has concentrated upon
source code. Although we already have a few examples of GI pro-
grams in use and under regular software maintenance [40] [41]
[22] [3, 50], there is a fear that some in the IT industry might be
resistant to AI automated source code improvement. Since software
developers care about their source code, potentially, by concentrat-
ing automatic updates on parameters within code, rather than the
instructions, it may be that they will be more accepting of evolved
artefacts.

Previously we showed one example where evolutionary compu-
tation was used to improve the accuracy of an existing program by
automatically maintaining numeric values within it. More recently
we showed an example where EC was used to transplant data to
give new functionality. We claimed at the time that the approach
was more general and here we have further demonstrated it to give
a double precision implementation of division. Although primarily
a further demonstration of the power of the approach, in some
cases, particularly for internet-of-things mote low resource com-
puting (or approximate computing), the evolved implementation
could be competitive.
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