
IEEE CEC 2008, Hong Kong, 1-6 June pages 459–465

A Fast High Quality Pseudo Random Number Generator for
Graphics Processing Units

W. B. Langdon

Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.

John von Neumann

Abstract—Limited numerical precision of nVidia GeForce
8800 GTX and other GPUs requires careful implementation
of PRNGs. The Park-Miller PRNG is programmed using G80’s
native Value4f floating point in RapidMind C++. Speed up is
more than 40. Code is available via ftp cs.ucl.ac.uk genetic/gp-
code/random-numbers/gpupark-miller.tar.gz

I. I NTRODUCTION

Monte Carlo computation, evolutionary algorithms, artifi-
cial neural networks and many othercomputational intelli-
gencetechniques require cheap randomisation. In many cases
true randomness is both hard to obtain and not necessary.
Instead a pseudo random number generator is used. Typi-
cally these are fast computer algorithms which dispense a
sequence of seemingly unrelated numbers. These numbers
are drawn from a distribution, such a uniform in the interval
0..1, Poisson, Gaussian, exponential and Cauchy. However
the numbers are not truly random since the next number
is chosen deterministically by the PRNG. (Deterministic
behaviour has practical advantages for regression testing and
debugging.)

However the history of pseudo random numbers on digital
computers is full of poor implementations. Randomness is
tricky. For example, in the 1960s IBM’s mainframes were
supplied with the infamous [3, page 1194] library function
RANDU, which Knuth described as “really horrible” [1, page
1973]. Similarly even IBM describes the “randomness” of
its AIX rand subroutine as “somewhat limited” [2]. Despite
many reports of poor PRNG practise [3], [4], implementation
problems continue to dog PRNGs. For example Peter Ross
reports [5] limited randomness inrandom.c (as sold by
Sun in Solaris 2.6).

In parallel implementations of random generators, we also
need to consider how to ensure processes running in one
computational stream appear random with respect to the
same computation occurring on another processing node [6].
It is often sufficient to seed the initial state of the PRNG
with different values on each processing stream.

The absence of high precision integer arithmetic in current
generation GPUs makes implementing PRNGs tricky (e.g.
[7], [8]). Indeed it has been widely regarded as impossible.
[9, Sect 3.4] suggests using a “linear congruential generator”

Mathematical and Biological Sciences, University of Essex,Colchester
CO4 3SQ, UK; email: w1angdon@essex.ac.uk.

int intrnd (int& seed) // 1<=seed<m
{
int const a = 16807; //ie 7**5
int const m = 2147483647; //ie 2**31-1
seed = (long(seed * a))%m;
return seed;
}

Fig. 1. park-miller.cc long int implementation. Multiplication and modulus
are used to return a randomised version of the input. By careful choice ofa
andmPark and Miller produce an apparently random sequence of integers
which uniformly samples the first231−2 integers without repeating any [3].

but no code is available and no test or performance results
are given. The four functions (ran1 ran2 ran3 ran4)
given in Numerical Recipes in C [10] requirelong integer
data types and so are not suitable for use on current GPUs.
Evolutionary computation is famously tolerant of bugs and
may yield good results despite them.

As Knuth says “The moral of this story is that random
numbers should not be generated by a method chosen at
random” [1, page 5]. Therefore we chose not to implement
a new random number generate but instead to implement
Park and Miller’s minimal standard PRNG [3].

II. A C/C++ PARK-M ILLER IMPLEMENTATION

Park and Miller included both a Pascal
implementation and validation test results in [3].
In 1994 we implemented Park-Miller in C/C++
http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/gp-code/random-numbers (see Figure 1).

Figure 1 shows the algorithm is quite simple and conse-
quently fast. (A modern Linux PC can generate 27 million
random numbers per second.) However thelong int in
Figure 1 is where the GPU implementation difficulties arise.
A minimum of 46 bits of precision are needed. (If one were
to implement Matsumoto’s Mersenne Twister at least 19 968
bits would be needed.) Today’s generation of GPUs do not
even have true integer arithmetic, instead all operations are
actually performed in single precision floating point numbers.
64 bit operation and a wider range of data types may well be
included in the next generation of GPUs. However current
GPUs do provide very rapid floating point operations on
short vectors of floating point values. This is built into GPUs

459

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://en.wikiquote.org/wiki/John_von_Neumann
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers

for manipulating up to four floating point values. (Vectors
may be used for red, green, blue and alpha components of
colours. Short vectors can also be used to hold positions
and directions in three dimensional simulations). RapidMind
provides Value4f and Value3f C++ types.

Figure 2 shows a single precision floating point
implementation of Park-Miller. This can be run on a
normal computer but is intended as a stepping stone
to a true GPU implementation. On a Linux PC, the
more complicated code is approximately 12 times slower
than that shown in Figure 1. Figures 2 and 3 are given
to explain the algorithm used to avoid errors due to
floating point lack of precision. If double precision is
available Park-Miller can be implemented directly, cf.
http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/gp-code/random-numbers . Figures 2 and 3
may also be useful to others who do not use RapidMind
but instead wish to implement random numbers on their
graphics hardware, e.g. using Cg, Brook or CUDA.

The first part of Park-Miller is unchanged,exactmul()
multiplies the input bya (to give temp). The next step is
to reduce this product modulom. However to avoid integer
division inherent in the C modulus operator% we replace
it by approximate floating point division. This is used as
a first guess for the largest integer multiple ofm which
does not exceedtemp . Sinceapproxdiv is the result of a
floating point calculation it may be inaccurate. Thedo loop
is used to refine the estimate using exact multiplication. Since
approxdiv may also overestimate, the followingwhile
loop is used to reduce the multiple ofmuntil the first exact
multiple of m less thantemp is reached. In fact the last call
of exactsub() actually calculates the required remainder.
Finally the 4 bytes of the answer are combined into a 31 bit
integer value.

exactmul() multiplies a 31 bit positive integer by a
non-negative integer no bigger than 16807. The smaller
number can be represented accurately by a single floating
point number (needing only 15 bits). However the 31 bit
number is split into 4 bytes. The multiplication is carried
out in four steps. Each requires no more than 23 bits of
precision. At each step the carry is moved to the next float
up. The carry on the last step will not exceed 15 bits and so
can be reliably stored in a fifth single precision float.

comp() is used to compare both the 4 byte and
4 byte+1 float numbers. Since each float actually stores an
integer value> and< can be safely used.

exactsub() is also used with both 4 and 5 element
numbers. For simplicityintrnd() is arranged so that
exactsub() only deals with non-negative numbers. This
makes it easy to borrow (carry down) when subtracting a
byte holding a bigger value from one holding a smaller one.
Also intrnd() ensures the result will fit into 4 bytes.

III. A GPU RANDOM NUMBER IMPLEMENTATION

The GPU code, cf. Figures 4 and 5, follows directly from
the CPU single precision floating point Park-Miller C/C++
implementation described in the previous section. A large

1e+05

1e+06

1e+07

1e+08

1e+09

1 4 16 64 256 1024 4K 16K 64K 256K 1M 4M

P
R

N
G

 g
en

er
at

ed
 p

er
 s

ec
on

d

active pseudo random number threads on 8800 GTX GPU

Fig. 7. Park-Miller random numbers per second (excluding host-GPU
transfer time) on nVidia 8800 GTX. In the test environment the rate depends
upon how effectively the 128 parallel stream processors can be used. Only
when there are more than 8192 separate threads do the 128 stream processors
effectively saturate.

measure of device independence is obtained by appearing
to treat the GPU as if it had one processor per element of
the user’s data. The GPU itself breaks up the work intoNP
(cf. Figure 6) separate threads (or tasks) and schedules them
across its stream processors. The programmer need not know
if the GPU has 4, 16, 128, or more stream processors. Note
each element of the vector (which may itself be a composite
object, such as Value4f) is serviced by its own thread. So
the number of simultaneous threads is equal to the number
of seeds transfered as a unit.

The intention is that the random numbers will be both
generated and used on the GPU, however Figure 6 sketches
the test harness used to call the GPU code and return its
results to the host CPU. The values returned are compared
with the anticipated results.

IV. RAPIDM IND C++ RANDOM NUMBER VALIDATION

AND PERFORMANCE

The original (1994) and both the new floating point
and the GPU implementations were validated using
the method suggested by Park and Miller [3]. That
is, by detailed comparison of the sequence of results
they produced against the values given by Park and
Miller in [3]. Also they were each run more than 100
million times and their results confirmed against those
at http://www.firstpr.com.au/dsp/rand31/
rand31-park-miller-carta.cc.txt

The following hardware and software were used for all
timings. An unmodified high performance nVidia GeForce
8800 GTX GPU (VBIOS version 60.80.08.00.37) mounted
inside a Linux 2.40 GHz Intel PC. The software versions
were: RapidMind 2.01 OpenGL, nVidia driver 100.14.11 and
GNU gcc 4.1.2 compiler. C++ code was compiled with-O4
optimisation. RapidMind defaults were used. In particular the
optimising GPU compiler was used at level 2.

460

http://www.firstpr.com.au/dsp/rand31/
http://www.firstpr.com.au/dsp/rand31/rand31-park-miller-carta.cc.txt

int intrnd (int& seed) // 1<=seed<m
{

float in[4];
int t=seed;
for(int i=0;i<4;i++) {in[i]=t&255; t=int(floor(t/256));}

float const a = 16807; //ie 7**5
float const m = 2147483647; //ie 2**31-1
const float M[4] = {255,255,255,127};
float Seed[4];
float temp[5];
float prod[5];
exactmul(16807,in,temp); //exact multiply seed*a;
float approxdiv = floor(float(seed)*a/m);
approxdiv++;
do {

approxdiv--;
exactmul(approxdiv,M,prod); //prod = exact multiply approxdiv*m;

} while(comp(5,temp,prod)<0); //decrease prod until prod <= temp

exactsub(5,temp,prod,Seed); //seed = temp - prod; (cannot be negative)
while(comp(4,Seed,M)>=0) { //decrease until 0<=seed<m

exactsub(4,Seed,M,Seed); //seed=seed-m;
}
seed=int(Seed[0]);float p=256;
for(int i=1;i<4;i++) {seed += int(Seed[i]*p); p *= 256;}
return seed;

}

Fig. 2. park-miller.cc (single precision implementation).a and m have the same meaning as before, cf. Figure 1.M is m represented in 4 byte format.
The first step of Park-Miller is unchanged, we multiply the input bya. To ensure this can be done in single precision arithmetic we split the input into its
four constituent bytes. Thusexactmul() must be able to represent16807 + 16807 × 255 = 4302592 exactly. The modulus operation is replaced by
repeated multiplication or subtraction untilcomp() reports the remainder has been reached. See text.

With RapidMind at the maximum transfer size (4 million)
the measured data transfer from the host to the GPU (via the
PCI express 16X bus) was 798 MB/sec. As expected transfer
back to the host is slower, and 277 MB/sec was measured.

For timing purposes the Park-Miller code was repeatedly
called. From a practical point of view the GPU loop must
not be made too long otherwise the operating system loses
contact with the GPU requiring a reboot. In the current
configuration (Ubuntu 4.1.2 KDE 3.5.6) mal-operation oc-
curs after about 6 seconds, in Gentoo 3.4.6-r1 it was about
15 seconds. Hence the timing loops were adjusted to feed
work to the GPU in about 3.5 second units.

The rate of generating random numbers was repeatedly
measured at each of a number of data transfer sizes (from 1,
2, 4, ... 4 million) and the average value taken. As expected
the peak rate is achieved with the largest data transfer size,
cf. Figure 7.

When 4 million random numbers are returned to the
host CPU for validation as a unit, an average of 73 billion
numbers were created in 93 seconds. In testing mode data is
transferred to/from the host. Using the data rates given above,
the estimated time taken for data transfers is 4.6 seconds.
For the GPU the data transfer costs should be excluded,

yielding an average speed for the GPU of 833 million
random numbers per second. In contrast, since we aim to run
computational intelligence techniques on the GPU, the costs
of transferring random numbers generated by the CPU onto
the GPU must be include. Even so the CPU still generates
and transfers on average 19 million random numbers per
second. I.e. the GPU is 44 times faster. (If we compare with
the same, single precision, algorithm running on the CPU,
then the GPU is more than 400 times faster than the CPU.
The fact that the GPU’s power consumption is modest also
suggests the host connection is also inhibiting the GPU and
still higher rates might be achieved.)

We estimate in the region of 106 floating point operations
are needed per random number. This suggests the GPU is
delivering in the region of 90 GFLOPS. I.e. about 17% of
the 518.4 Giga FLOPs claimed by the manufactures.

V. D ISCUSSION

As Figure 7 shows even after the time taken to transfer
initial seeds to the GPU and random numbers back to the
host is excluded, performance varies strongly with the work
unit size. When smaller units are used more time will be
required to reschedule both the Unix user process on the

461

inline void exactmul(const float f,const float in[4],float out[5]) {
assert(f<=16807);
out[0]=0;
for(int i=0;i<4;i++) {

const float t=in[i]*f;
out[i] += t;
out[i+1] = floor(out[i]/256);
out[i] = int(out[i])%256;

}
}
inline float comp(const int len,const float a[], const float b[]) {

for(int i=(len-1);i>=0;i--) {
if(a[i]>b[i]) return +1;
if(a[i]<b[i]) return -1;

}
return 0;

}
inline void exactsub(const int len,const float a[], const float b[], float out[4]) {

//nb a>=b
float A[5];memcpy(A,a,len*sizeof(float));
float B[5];memcpy(B,b,len*sizeof(float));
for(int i=0;i<len;i++) {

if(a[i]<B[i]) {assert(i<len);A[i]+=256; B[i+1]++;} //borrow if need be
const float t = A[i]-B[i]; //a-b
if(i<4) { assert(0<=t && t<256); out[i] = t; }
else { assert(t==0); }

}
}

Fig. 3. park-miller.cc (single precision implementation support routines).exactmul() , comp() and exactsub() simulate long integer arithmetic
using single precision floats. Each assumes its array inputs represent a positive integer. The four least significant bytes of which are stored in the last four
floats of the array.comp() and exactsub() may act either on 4 bytes or 5 component arrays. The maximum value of the fifth component is 16741.
The routines assume they are only used as part ofintrnd() cf. Figure 2, and for speed do not comprehensively validate their inputs.

CPU and work on the GPU. Previously we estimated this
at about300µS. This is negligible compared to the typical
work unit of 3.5 seconds used here.

We suggest the variation of performance with number of
threads (seen in Figure 7) may be mostly due to memory
access latency in the GPU. In nVidia’s G80 architecture, the
GPU’s main memory is housed in separate memory chips
and is shared between all the stream processors. Although
fast RAM, fast access buses and multiple caches are used,
in the GeForce 8800 there is a delay of up to about 300
clock ticks between requesting data and being able to use it.
Rather than letting the stream processor be idle, the GPU will
schedule another thread. In effect multi threading is needed
to conceal memory latency.

When Park-Miller is used as part of a GPU application
the random number seed will only be used on the GPU
and will probably be discarded when the application thread
is finished. Hence the seed need never by either read or
written to the GPU’s RAM and will probably always reside in
each stream processor’s L1 cache. Thus in GPU applications
random numbers may not hit RAM latency problems and
so should run even faster than the 833 million per second
reported in Section IV.

In most applications it will be necessary to seed each
parallel thread separately [6]. In many cases it will be
convenient and sufficient to use a single seed value for the
whole application and derive individual thread seeds from it.
This will mean pseudo random numbers used in one part of
the program will in fact not be independent. How important
this is will, of course, depend upon the application and how
it uses its random numbers. However this problem is not new
and must also be overcome in non-parallel implementations.

A simple way to create an individual seed per thread is
by adding the thread number (e.g. derived from a RapidMind
grid Array) to the master seed. However this means each
thread’s initial seed is only one different from its neighbours.
Depending on how the pseudo random numbers are used,
this may not be sufficient. However each succeeding random
number becomes more distinct from the corresponding ran-
dom number in the neighbouring thread. For most practical
purposes, it should be sufficient to initialise using a master
seed+thread number and simply discard the first 3 random
numbers. (NB. legal values of Park-Miller seeds are between
1 and231−2. Also the seeding calculations must not exceed
the GPU’s floating point precision.)

462

inline void Park_Miller(Value4f& Seed) {
#define nul comp=comp

float const a = 16807; //ie 7**5
float const m = 2147483647; //ie 2**31-1
const Value4f M(255,255,255,127);
Value<5,float> temp;
Value<5,float> prod;
const Value1f seed = Seed(0) +

Seed(1)*Value1f(256) +
Seed(2)*Value1f(256*256) +
Seed(3)*Value1f(256*256*256);

exactmul(a,Seed,temp); //exact multiply seed*a;
Value1i approxdiv = floor(seed*a/m);
Value1i comp = -1; //loop at least once
FOR(nul,comp<0,nul) {

exactmul(Value1f(approxdiv),M,prod); //prod = exact multiply approxdiv*m;
comp=comp5(temp,prod);
approxdiv--;

}ENDFOR
exactsub5(temp,prod,Seed); //seed = temp - prod;
FOR(nul,comp4(Seed,M)>=0,nul) {

exactsub4(Seed,M,Seed); //seed=seed-m;
}ENDFOR

#undef nul
}

Fig. 4. RapidMind C++ glsl implementation of Park-Miller.a, m, M, temp , prod and approxdiv have the same meaning as before, cf. Figure 2.
Since int is not available on the GPU butValue4f is, the precise four byte format is used both when calling the random number generator and for
its return value. Therefore the single precision representation of the input,seed , must be calculated beforeapproxdiv is needed. The RapidMindFOR
loops are equivalent to thedo and while loops shown in Figure 2 but are executed by the GPU’s stream processors. On the GPU the singlecomp()
and exactsub() which were used with two different types of inputs are each replaced by two equivalent routines which deal with onlyValue4f or
Value<5,float> types, cf. Figure 5.

VI. CONCLUSIONS

We have described a fast GPU implementation of
a pseudo random number generator, meeting Park
and Miller’s minimum recommendations [3]. It has
been implemented in RapidMind’s platform and
demonstrated on a high end nVidia GPU. The code
is available via anonymous ftp fromcs.ucl.ac.uk
genetic/gp-code/random-numbers/
gpu_park-miller.tar.gz

The algorithm should be suitable for implementation in
other GPU languages such as Cg, Brook and CUDA. Bench
marking the C++ code, shows operation on the GPU is at
least 44 times faster than running Park-Miller on the host
CPU and transferring pseudo random numbers to the GPU.

ACKNOWLEDGMENT

I would like to thank Tim Czyrnyj.

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming, 2nd ed. Addison-
Wesley, 1981, vol. 2 Seminumerical Algorithms.

[2] IBM, http://publib.boulder.ibm.com/infocenter/
systems/index.jsp?topic=/com.ibm.aix.basetechref/
doc/basetrf2/rand.htm , 2007.

[3] S. K. Park and K. W. Miller, “Random number generators: Good
ones are hard to find,”Communications of the ACM, vol. 32, no. 10,
pp. 1192–1201, Oct 1988.

[4] K. Entacher, “A collection of selected pseudorandom number
generators with linear structures,” Dept. of Mathematics, University
Salzburg, Austria, Tech. Rep., 13 January 1998.

[5] P. Ross,http://www.dcs.napier.ac.uk/ ∼peter/ 2007.
[6] “A brief on parallel random number generators,” National Energy

Research Scientific Computing Center, Lawrence Berkeley National
Laboratory, USA, White paper, 15 Sep 2005.

[7] P. Warden, “Random numbers in fragment programs,” 10 May 2005,
http://petewarden.com/notes/archives/2005/05/
random_numbers.html , accessed 24 Nov 2007.

[8] T.-T. Wong, M.-L. Wong, and K.-L. Fok, “Why
current GPU is no good for high-quality random numbers generation?”
http://www.cs.cuhk.edu.hk/ ∼ttwong/software/ecgpu/
ecgpu.html , epgpu version 0.99. Accessed 21 Nov 2007.

[9] Q. Yu, C. Chen, and Z. Pan, “Parallel genetic algorithms on
programmable graphics hardware,” inAdvances in Natural
Computation, First International Conference, ICNC 2005,
Proceedings, Part III, ser. Lecture Notes in Computer Science,
L. Wang, K. Chen, and Y.-S. Ong, Eds., vol. 3612. Changsha,
China: Springer, Aug. 27-29 2005, pp. 1051–1059.

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C, 2nd ed. Cambridge University Press, 1992.

463

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf2/rand.htm
http://www.dcs.napier.ac.uk/~peter/
http://www.nersc.gov/nusers/resources/software/libs/math/random/white_paper.php
http://petewarden.com/notes/archives/2005/05/random_numbers.html
http://www.cs.cuhk.edu.hk/~ttwong/software/ecgpu/ecgpu.html
http://dx.doi.org/10.1007/11539902_134

inline void exactmul(const Value1f f, const Value4f in, Value<5,float>& out) {
//RM_DEBUG_ASSERT(f<= Value1f(16807));
out[0]=0;
for(int i=0;i<4;i++) {

out[i] += round(in[i]*f);
out[i+1] = floor(out[i]/Value1f(256));
out[i] = round(Value1i(out[i])%256);

}
}
inline Value1i comp4(const Value4f a, const Value4f b) {

return cond(a[3]>b[3],Value1i(+1),
cond(a[3]<b[3],Value1i(-1),
cond(a[2]>b[2],Value1i(+1),
cond(a[2]<b[2],Value1i(-1),
cond(a[1]>b[1],Value1i(+1),
cond(a[1]<b[1],Value1i(-1),
cond(a[0]>b[0],Value1i(+1),
cond(a[0]<b[0],Value1i(-1),Value1i(0)))))))));

}
inline Value1i comp5(const Value<5,float> a, const Value<5,float> b) {

return cond(a[4]>b[4],Value1i(+1),
cond(a[4]<b[4],Value1i(-1),
cond(a[3]>b[3],Value1i(+1),
cond(a[3]<b[3],Value1i(-1),
cond(a[2]>b[2],Value1i(+1),
cond(a[2]<b[2],Value1i(-1),
cond(a[1]>b[1],Value1i(+1),
cond(a[1]<b[1],Value1i(-1),
cond(a[0]>b[0],Value1i(+1),
cond(a[0]<b[0],Value1i(-1),Value1i(0)))))))))));

}
inline void exactsub4(const Value4f a, const Value4f b, Value4f& out) {

//nb a>=b
Value<5,float> A;
Value<5,float> B;
for(int i=0;i<4;i++) {A[i]=a[i];B[i]=b[i];} A[4]=0;B[4]=0;
exactsub5(A,B,out);

}
inline void exactsub5(const Value<5,float> a, const Value<5,float> b, Value4f& out) {

//nb a>=b
Value<5,float> A;
Value<5,float> B;
for(int i=0;i<5;i++) {A[i]=a[i];B[i]=b[i];}
for(int i=0;i<4;i++) {

B[i+1] = cond(a[i]<B[i],round(B[i+1]+Value1f(1)),B[i+1]);
A[i] = cond(a[i]<B[i],round(A[i]+Value1f(256)),A[i]);
out[i] = round(A[i]-B[i]);

}
//A[5]==B[5]

}

Fig. 5. RapidMind C++ glsl implementation support routines are equivalent to those given in Figure 3. To ensure precise results explicitround operations
are used. Although RapidMind provides an IF for operation on the GPU stream processors, thecond() operation is regarded as better. Thefor() loops
are a coding convenience. RapidMind expands them before the compiled code is transfered to the GPU. Inexactsub5 the twocond() statements only
change toB[i+1] andA[i] if their first argument is true. (If its false they effectively do nothing.) Againcond() is seen as better thanIF . Care must
be taken to ensure only the correct arguments are passed to the code since almost no validation is provided.

464

park_miller = RM_BEGIN {
InOut<Value4f> Seed;
Value1i I;
FOR(I=0,I<TIMES,I++) {
Value1i J;
FOR(J=0,J<TIMES2,J++) {
Value1i K;
FOR(K=0,K<TIMES3,K++) {

Park_Miller(Seed);
} ENDFOR
} ENDFOR
} ENDFOR

} RM_END

...

// Access the internal arrays where the data is stored
Array<1,Value4f> Seed(NP);
float* in = Seed.write_data();
for (int i = 0; i<NP; i++) {

int t = park_miller_seed[i];
if(!(0<t && t<2147483647)) {

cout<<"Bad park_miller_seed i="<<i<<" "<<park_miller_seed[i]<<endl;
exit(1);}

for(int j=0;j<4;j++) {in[i*4+j] = t%256; t /= 256;}
}
Array<1,Value4f> Result;
Result = gpu->park_miller(Seed);
const float* result = Result.read_data();

Fig. 6. Parts of the RapidMind test harness. The lower code fragment passes a vector ofNP initial seed values to the GPU. (NPmay be up to 4 million).
The GPU’s multiple stream processors simulate simultaneous parallel operation of NP processors. The code betweenRM_BEGINandRM_ENDis run on
the GPU for each of the NP simulated processors. For test purposes it callsPark_Miller() , the random number generator, many times. When the
GPU has finished the last random number created by each (simulated) processor is returned to the host CPU via a vector containingNP Value4f values.
Despite the single precision code’s complexity, the GPU can run more than 40 times faster than the CPU.

465

	Introduction
	A C/C++ Park-Miller Implementation
	A GPU Random Number Implementation
	RapidMind C++ Random Number Validation and Performance
	Discussion
	Conclusions
	References

