IEEE CEC 2008, Hong Kong, 1-6 June pages 459—-465

A Fast High Quality Pseudo Random Number Generator for
Graphics Processing Units

W. B. Langdon

Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.
John von Neumann

Abstract—Limited numerical precision of nVidia GeForce int intrnd (int& seed) // 1<=seed<m

8800 GTX and other GPUs requires careful implementation { i

of PRNGs. The Park-Miller PRNG is programmed using G80’s int const a = 16807, llie 7**5
native Value4f floating point in RapidMind C++. Speed up is int const m = 2147483647; llie 2**31-1
more than 40. Code is available via ftg cs.ucl.ac.uk genetic/gp- seed = (long(seed * a))%m:;
code/random-numbers/gpu park-miller.tar.gz return seed:

I. INTRODUCTION }

Monte Carlo computation, evolutionary algorithms, artifi+ig. 1. park-miller.cc long int implementation. Multiplication and modulus
cial neural networks and many otheomputational intelli- are used to return a randomised version of the input. By careful choige of
gencetechniques require cheap randomisation. In many casgi! ™ Park and Miller produce an apparently random sequence of integers

. . which uniformly samples the first>'—2 integers without repeating any![3].
true randomness is both hard to obtain and not necessary.

Instead a pseudo random number generator is used. Typi-

cally these are fast computer algorithms which dispense g no code is available and no test or performance results
sequence of seemingly unrelated numbers. These numbgfg given. The four functiongd4nl ran2 ran3 ran4)
are drawn from a distribution, such a uniform in the intervabiven in Numerical Recipes in C[10] requiteng integer
0.1, Poisson, Gaussian, exponential and Cauchy. HOWegiia types and so are not suitable for use on current GPUS.

the numbers are not truly random since the next numbes, | tionary computation is famously tolerant of bugs and
is chosen deterministically by the PRNG. (Determ|n|st|(;nay yield good results despite them.

behaviour has practical advantages for regression testing antyg” knuth says “The moral of this story is that random

debugging.) _ __numbers should not be generated by a method chosen at
However the history of pseudo random numbers on d'g't'ﬁ‘bndom” [1, page 5]. Therefore we chose not to implement

computers is full of poor implementations. Randomness i$ new random number generate but instead to implement
tricky. For example, in the 1960s IBM’'s mainframes Weres5.k and Miller's minimal standard PRNG [3].

supplied with the infamous [3, page 1194] library function

RANDU, which Knuth described as “really horrible”|[1, page II. A C/C++ PARK-MILLER IMPLEMENTATION

1973]. Similarly even IBM describes the “randomness” of

its AIX rand subroutine as “somewhat limited”|[2]. Despiteimpgrl;en tZtri]gn g/lr:ltljer valligglttijgned tes?Otrr]esul?s iI:aS([?]I
many reports of poor PRNG practise [3]) [4], implementatiorlln P 1994 we implemented Park-Miller in C/C++.
problems continue to dog PRNGs. For example Peter Ross P

reports [5] limited randomness irandom.c (as sold by http://www.cs.ucl.ac. uk/statt/W.Langdon/
Sun in Solaris 2.6). ftp/gp-code/random-numbers (see Figuré]l).

. . Figure[] shows the algorithm is quite simple and conse-
In parallel implementations of random generators, we also ; -
. S uently fast. (A modern Linux PC can generate 27 million
need to consider how to ensure processes running in one

compuaonl tram appear random wih respect 1o UETCT, TUTLET b Seseie) over e
same computation occurring on another processing nade [gure[] P '

It is often sufficient to seed the initial state of the PRNG. " mum of 46 bits of Premsmn are ngeded. (If one were
with different values on each processing stream. to implement Matsumoto’s Mersenne Twister at least 19 968

The absence of high precision integer arithmetic in currer;)tItS would be needed.) Today's generation of GPUs do not

. . - . even have true integer arithmetic, instead all operations are
generation GPUs makes implementing PRNGs tricky (e'%’ctually performed in single precision floating point numbers.

[7], [8]). Indeed it has been widely regarded as impOSSibl% bit operation and a wider range of data types may well be

[9: Sect 3.4] suggests using a "linear congruential gem:‘Ir"’mlrncluded in the next generation of GPUs. However current

Mathematical and Biological Sciences, University of Essex,CoIchesttg;’PUS do provide V_ery ra_pid floating POi_nt ope_rations on
CO04 3SQ, UK; email: wlangdon@essex.ac.uk. short vectors of floating point values. This is built into GPUs

459

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://en.wikiquote.org/wiki/John_von_Neumann
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers

for manipulating up to four floating point values. (Vectors
1e+09
may be used for red, green, blue and alpha components of #oor
colours. Short vectors can also be used to hold positiong + o+
and directions in three dimensional simulations). RapidMind s +
. 1e+08 | e
provides Value4f and Value3f C++ types.

Figure [2 shows a single precision floating point
implementation of Park-Miller. This can be run on ag _ 1| . |
normal computer but is intended as a stepping stoneg .
to a true GPU implementation. On a Linux PC, the o +
more complicated code is approximately 12 times slowerg 10406 I +]
than that shown in Figurp] 1. Figurg¢$ 2 3 are given” +
to explain the algorithm used to avoid errors due to *
floating point lack of precision. If double precision is L

. . .) 1e+05
available Park-Miller can be implemented directly, cf. 1 4 16 64 256 1024 4K 16K 64K 256K 1M 4M
http;//www,cs,ucl_ac,uk/staffNV,Langdon/ active pseudo random number threads on 8800 GTX GPU
ftp/gp-code/random-numbers . Figures [2 and[]3
may also be useful to others who do not use Rap|dM|nag 7. Park-Miller random numbers per second (excluding host-GPU

. . . nsfer time) on nVidia 8800 GTX. In the test environment the rate depends
but instead wish to |mplement random numbers on theﬂﬁon how effectively the 128 parallel stream processors can be used. Only

graphics hardware, e.g. using Cg, Brook or CUDA. when there are more than 8192 separate threads do the 128 stream processors
The first part of Park-Miller is unchangeexactmul() effectively saturate.
multiplies the input bya (to give temp). The next step is

to reduce this product modulm However to avoid integer o] .]
division inherent in the C modulus operatéwe replace measure of device independence is obtained by appearing

it by approximate floating point division. This is used adC treat the GPU as if it had one processor per element of
a first guess for the largest integer multiple mfwhich the user's data. The GPU itself breaks up the work N
does not exceettmp . Sinceapproxdiv is the result of a (cf. F|gl_1re[:q$) separate threads (or tasks) and schedules them
floating point calculation it may be inaccurate. Tdhe loop ~ CrOSS IS stream processors. The programmer need not know
is used to refine the estimate using exact multiplication. Sindgthe GPU has 4, 16, 128, or more stream processors. Note
approxdiv. may also overestimate, the followinghile each element of the vector (which may itself be a composite

loop is used to reduce the multiple ofuntil the first exact ©Pi€ct, such as Value4) is serviced by its own thread. So
multiple of mless thartemp is reached. In fact the last call the number of simultaneous threads is equal to the number

of exactsub() actually calculates the required remainderOf Seeds transfered as a unit.

Finally the 4 bytes of the answer are combined into a 31 bit 1he intention is that the random numbers will be both
integer value. generated and used on the GPU, however Figlire 6 sketches

exactmul() multiplies a 31 bit positive integer by a the test harness used to call the GPU code and return its
non-negative integer no bigger than 16807. The Sma"égsults to th_e_host CPU. The values returned are compared
number can be represented accurately by a single floatiMith the anticipated results.
point nur_nber _(n_eeding only 15 bits). I_-|o_we_/er t_he 31_ bit IV. RAPIDMIND C++ RANDOM NUMBER VALIDATION
num_ber is split into 4 bytes. _The multiplication is car.rled AND PERFORMANCE
out in four steps. Each requires no more than 23 bits of o . .
precision. At each step the carry is moved to the next float The original (1994) and both the new floating point
up. The carry on the last step will not exceed 15 bits and §'d the GPU implementations were validated using
can be reliably stored in a fifth single precision float. the method suggested by Park and Millerl [3]. That
comp() is used to compare both the 4 byte andS: by detailed comparison of the sequence of results
4 byte+1 float numbers. Since each float actually stores 8¢y Produced against the values given by Park and

rated per sec

integer value> and< can be safely used. Miller in [B]. Also they were each run more than 100
exactsub() is also used with both 4 and 5 elementMillion times and their results confirmed against those
numbers. For simplicityintrnd() is arranged so that & NttpJ//www.firstpr.com.au/dsp/rand31/

exactsub() only deals with non-negative numbers. Thisrand31-park-miller-carta.cc.txt
makes it easy to borrow (carry down) when subtracting a The following hardware and software were used for all

byte holding a bigger value from one holding a smaller ondiMmings. An unmodified high performance nVidia GeForce
Also intrnd() ensures the result will fit into 4 bytes. 8800 GTX GPU (VBIOS version 60.80.08.00.37) mounted

inside a Linux 2.40 GHz Intel PC. The software versions
I1l.' A GPU RANDOM NUMBER IMPLEMENTATION were: RapidMind 2.01 OpenGL, nVidia driver 100.14.11 and
The GPU code, cf. Figurgs 4 apjl 5, follows directly fromGNU gcc 4.1.2 compiler. C++ code was compiled wi@v
the CPU single precision floating point Park-Miller C/C++optimisation. RapidMind defaults were used. In particular the
implementation described in the previous section. A largeptimising GPU compiler was used at level 2.

460

http://www.firstpr.com.au/dsp/rand31/
http://www.firstpr.com.au/dsp/rand31/rand31-park-miller-carta.cc.txt

int intrnd (int& seed) // l<=seed<m
{
float in[4];
int t=seed;
for(int i=0;i<4;i++) {in[i]=t&255; t=int(floor(t/256));}

float const a = 16807; llie 7**5
float const m = 2147483647; llie 2**31-1
const float M[4] = {255,255,255,127};
float Seed[4];
float temp[5];
float prod[5];
exactmul(16807,in,temp); //exact multiply seed*a;
float approxdiv = floor(float(seed)*a/m);
approxdiv++;
do {
approxdiv--;
exactmul(approxdiv,M,prod); //prod = exact multiply approxdiv*m;
} while(comp(5,temp,prod)<0); //decrease prod until prod <= temp

exactsub(5,temp,prod,Seed); //seed = temp - prod; (cannot be negative)
while(comp(4,Seed,M)>=0) { //decrease until O<=seed<m
exactsub(4,Seed,M,Seed); //seed=seed-m;

}

seed=int(Seed[0]);float p=256;

for(int i=1;i<4;i++) {seed += int(Seed[i]*p); p *= 256;}
return seed;

}

Fig. 2. park-miller.cc (single precision implementatioa)and mhave the same meaning as before, cf. Fi§ur&is mrepresented in 4 byte format.
The first step of Park-Miller is unchanged, we multiply the inputebyTo ensure this can be done in single precision arithmetic we split the input into its
four constituent bytes. Thusxactmul() must be able to represeh6807 4+ 16807 x 255 = 4302592 exactly. The modulus operation is replaced by
repeated multiplication or subtraction untibmp() reports the remainder has been reached. See text.

With RapidMind at the maximum transfer size (4 million)yielding an average speed for the GPU of 833 million
the measured data transfer from the host to the GPU (via thendom numbers per second. In contrast, since we aim to run
PCI express 16X bus) was 798 MB/sec. As expected transfesmputational intelligence techniques on the GPU, the costs
back to the host is slower, and 277 MB/sec was measureaf transferring random numbers generated by the CPU onto

For timing purposes the Park-Miller code was repeatediihe GPU must be include. Even so the CPU still generates
called. From a practical point of view the GPU loop mustnd transfers on average 19 million random numbers per
not be made too long otherwise the operating system lossscond. |.e. the GPU is 44 times faster. (If we compare with
contact with the GPU requiring a reboot. In the currenthe same, single precision, algorithm running on the CPU,
configuration (Ubuntu 4.1.2 KDE 3.5.6) mal-operation octhen the GPU is more than 400 times faster than the CPU.
curs after about 6 seconds, in Gentoo 3.4.6-rl it was abothe fact that the GPU’s power consumption is modest also
15 seconds. Hence the timing loops were adjusted to fesdggests the host connection is also inhibiting the GPU and
work to the GPU in about 3.5 second units. still higher rates might be achieved.)

The rate of generating random numbers was repeatedlyWe estimate in the region of 106 floating point operations
measured at each of a number of data transfer sizes (fromate needed per random number. This suggests the GPU is
2, 4, ... 4 million) and the average value taken. As expectatklivering in the region of 90 GFLOPS. l.e. about 17% of
the peak rate is achieved with the largest data transfer sizbe 518.4 Giga FLOPs claimed by the manufactures.
cf. Figure[T.

When 4 million random numbers are returned to the
host CPU for validation as a unit, an average of 73 billion As Figure[T shows even after the time taken to transfer
numbers were created in 93 seconds. In testing mode datarigial seeds to the GPU and random numbers back to the
transferred to/from the host. Using the data rates given abovegst is excluded, performance varies strongly with the work
the estimated time taken for data transfers is 4.6 secondmit size. When smaller units are used more time will be
For the GPU the data transfer costs should be excludemquired to reschedule both the Unix user process on the

V. DISCUSSION

461

inline void exactmul(const float f,const float in[4],float out[5]) {
assert(f<=16807);
out[0]=0;
for(int i=0;i<4;i++) {
const float t=in[i]*f;

outli] +=t;
out[i+1] = floor(out[i]/256);
out[i] = int(out[i])%256;

}
}

inline float comp(const int len,const float a[], const float b[]) {
for(int i=(len-1);i>=0;i--) {
if(@[i]>b[i]) return +1;
if(afil<b[i]) return -1;
}
return O;
}
inline void exactsub(const int len,const float a[], const float b[], float out[4]) {
/Inb a>=b
float A[5];memcpy(A,a,len*sizeof(float));
float B[5];memcpy(B,b,len*sizeof(float));
for(int i=0;i<len;i++) {
if(a[i]<B[i]) {assert(i<len);A[i]+=256; B[i+1]++;} //borrow if need be
const float t = AJi]-BJi]; /la-b
if(i<d4) { assert(0<=t && t<256); out[i] = t; }
else { assert(t==0); }
}
}

Fig. 3. park-miller.cc (single precision implementation support routiregctmul() , comp() andexactsub() simulate long integer arithmetic

using single precision floats. Each assumes its array inputs represent a positive integer. The four least significant bytes of which are stored in the last four
floats of the arraycomp() andexactsub() may act either on 4 bytes or 5 component arrays. The maximum value of the fifth component is 16741.

The routines assume they are only used as pairtofd() cf. Figure[2, and for speed do not comprehensively validate their inputs.

CPU and work on the GPU. Previously we estimated this In most applications it will be necessary to seed each
at about300uS. This is negligible compared to the typicalparallel thread separately|[6]. In many cases it will be
work unit of 3.5 seconds used here. convenient and sufficient to use a single seed value for the
We suggest the variation of performance with number afthole application and derive individual thread seeds from it.
threads (seen in Figufg 7) may be mostly due to memoikhis will mean pseudo random numbers used in one part of
access latency in the GPU. In nVidia’s G80 architecture, thiae program will in fact not be independent. How important
GPU’s main memory is housed in separate memory chighis is will, of course, depend upon the application and how
and is shared between all the stream processors. Althouigluses its random numbers. However this problem is not new
fast RAM, fast access buses and multiple caches are usedd must also be overcome in non-parallel implementations.
in the GeForce 8800 there is a delay of up to about 300
clock ticks between requesting data and being able to use it.A simple way to create an individual seed per thread is
Rather than letting the stream processor be idle, the GPU willy adding the thread number (e.g. derived from a RapidMind
schedule another thread. In effect multi threading is needepid Array) to the master seed. However this means each
to conceal memory latency. thread’s initial seed is only one different from its neighbours.
When Park-Miller is used as part of a GPU applicatioDepending on how the pseudo random numbers are used,
the random number seed will only be used on the GPthis may not be sufficient. However each succeeding random
and will probably be discarded when the application threadumber becomes more distinct from the corresponding ran-
is finished. Hence the seed need never by either read @aom number in the neighbouring thread. For most practical
written to the GPU’s RAM and will probably always reside inpurposes, it should be sufficient to initialise using a master
each stream processor’s L1 cache. Thus in GPU applicatiossed-thread number and simply discard the first 3 random
random numbers may not hit RAM latency problems andumbers. (NB. legal values of Park-Miller seeds are between
so should run even faster than the 833 million per secoridand23! —2. Also the seeding calculations must not exceed
reported in Sectiop V. the GPU'’s floating point precision.)

462

inline void Park_Miller(Value4f& Seed) {
#define nul comp=comp
float const a = 16807, llie 7**5
float const m = 2147483647; /lie 2**31-1
const Value4f M(255,255,255,127);
Value<5,float> temp;
Value<5,float> prod,;
const Valuelf seed = Seed(0) +
Seed(1)*Valuelf(256) +
Seed(2)*Valuelf(256*256) +
Seed(3)*Valuelf(256*256*256);

exactmul(a,Seed,temp); //fexact multiply seed*a;

Valueli approxdiv = floor(seed*a/m);

Valueli comp = -1; //loop at least once

FOR(nul,comp<0,nul) {
exactmul(Valuelf(approxdiv),M,prod); //prod = exact multiply approxdiv*m;
comp=comp5(temp,prod);
approxdiv--;

}ENDFOR

exactsub5(temp,prod,Seed); //seed = temp - prod;

FOR(nul,comp4(Seed,M)>=0,nul) {
exactsub4(Seed,M,Seed); //seed=seed-m;

JENDFOR

#undef nul

}

Fig. 4. RapidMind C++ glsl implementation of Park-Mille, m M temp, prod andapproxdiv have the same meaning as before, cf. Figire 2.
Sinceint is not available on the GPU bialue4f s, the precise four byte format is used both when calling the random number generator and for
its return value. Therefore the single precision representation of the isged,, must be calculated befoapproxdiv is needed. The RapidMinEOR

loops are equivalent to thdo andwhile loops shown in Figurg]2 but are executed by the GPU's stream processors. On the GPU theosimg)e
andexactsub() which were used with two different types of inputs are each replaced by two equivalent routines which deal witaloe§f or
Value<5,float> types, cf. Figur¢s.

VI. CONCLUSIONS [2] I1BM, |http://publib.boulder.ibm.com/infocenter/
. . . systems/index.jsp?topic=/com.ibm.aix.basetechref/
We have described a fast GPU implementation of d)éc,basem,,alng.hm? 2007.

a pseudo random number generator, meeting Parlg] S. K. Park and K. W. Miller, “Random number generators: Good
and Miller's minimum recommendations[][3]. It has ones are hard to findCommunications of the ACMol. 32, no. 10,

: . R pp. 1192-1201, Oct 1988.
been implemented in RapidMind’s platform and [4] K. Entacher, “A collection of selected pseudorandom number
demonstrated on a high end nVidia GPU. The code generators with linear structures,” Dept. of Mathematics, University

is available via anonymous ftp frorts.ucl.ac.uk Salzburg, Austria, Tech. Rep., 13 January 1998.
- [5] P. Rosslhttp://www.dcs.napier.ac.uk/ ~peter/ |2007.
genetic/gp-code/random-numbers/ [6] "A brief on parallel random number generators,” National Energy

gpu park-miller.tar.gz Research Scientific Computing Center, Lawrence Berkeley National
The algorithm should be suitable for implementation in _ Laboratory, USA, White paper, 15 Sep 2005. ,
her GPU | h Ca. B k and CUDA. B h?] P. Warden, “Random numbers in fragment programs,” 10 May 2005,
ot er_ anguages such as Lg, FQO an ' _enc http://petewarden.com/notes/archives/2005/05/
marking the C++ code, shows operation on the GPU is at random_numbers.html , accessed 24 Nov 2007.
least 44 times faster than running Park-Miller on the host8l T-T- Wong, M.-L. Wong, and K.-L. Fok, "Why

. current GPU is no good for high-quality random numbers generation?”
CPU and transferring pseudo random numbers to the GPU. g gh-quatty 9

http://www.cs.cuhk.edu.hk/ ~ttwong/software/ecgpu/
ecgpu.html | epgpu version 0.99. Accessed 21 Nov 2007.
ACKNOWLEDGMENT [9] Q. YU, C. Chen, and Z. Pan, “Parallel genetic algorithms on
| would like to thank Tim Czyrnyj. programmable graphics hardware,” Anvances in Natural

Computation, First International Conference, ICNC 2005,
Proceedings, Part Ill ser. Lecture Notes in Computer Science,

REFERENCES L. Wang, K. Chen, and Y.-S. Ong, Eds., vol. 3612. Changsha,
[1] D. E. Knuth, The Art of Computer Programmingnd ed. Addison- China: Springer, Aug. 27-29 2005, pp. 1051-1059.
Wesley, 1981, vol. 2 Seminumerical Algorithms. [10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in @nd ed. Cambridge University Press, 1992.

463

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf2/rand.htm
http://www.dcs.napier.ac.uk/~peter/
http://www.nersc.gov/nusers/resources/software/libs/math/random/white_paper.php
http://petewarden.com/notes/archives/2005/05/random_numbers.html
http://www.cs.cuhk.edu.hk/~ttwong/software/ecgpu/ecgpu.html
http://dx.doi.org/10.1007/11539902_134

inline void exactmul(const Valuelf f, const Value4f in, Value<5,float>& out) {
//IRM_DEBUG_ASSERT(f<= Valuelf(16807));
out[0]=0;
for(int i=0;i<4;i++) {
out[if += round(in[i]*f);
out[i+1] = floor(out[i]/Valuelf(256));
out[i] round(Valueli(out[i])%256);
}
}

inline Valueli comp4(const Value4f a, const Value4f b) {
return cond(a[3]>b[3],Valueli(+1),
cond(a[3]<b[3],Valueli(-1),
cond(a[2]>b[2],Valueli(+1),
cond(a[2]<b[2],Valueli(-1),
cond(a[1]>b[1],Valueli(+1),
cond(a[1l]<b[1],Valueli(-1),
cond(a[0]>b[0],Valueli(+1),
cond(a[0]<b[0],Valueli(-1),Valueli(0)))N);

}

inline Valueli comp5(const Value<5,float> a, const Value<5,float> b) {
return cond(a[4]>b[4],Valueli(+1),
cond(a[4]<b[4],Valueli(-1),
cond(a[3]>b[3],Valueli(+1),
cond(a[3]<b[3],Valueli(-1),
cond(a[2]>b[2],Valueli(+1),
cond(a[2]<b[2],Valueli(-1),
cond(a[1]>b[1],Valueli(+1),
cond(a[1]<b[1],Valueli(-1),
cond(a[0]>b[0],Valueli(+1),
cond(a[0]<b[0],Valueli(-1),Valueli(0)))NHN));
}
inline void exactsub4(const Value4f a, const Value4f b, Value4f& out) {
/Inb a>=b
Value<5,float> A;
Value<5,float> B;
for(int i=0;i<4;i++) {Ali]=al[i];B[i]=b[i];} A[4]=0;B[4]=0;
exactsub5(A,B,out);
}
inline void exactsub5(const Value<5,float> a, const Value<5,float> b, Value4f& out) {
/Inb a>=b
Value<5,float> A;
Value<5,float> B;
for(int i=0;i<5;i++) {A[i]=a[i];B[i]=bl[i];}
for(int i=0;i<4;i++) {

Bli+1] = cond(a[i]<B[i],round(B[i+1]+Valuelf(1)),B[i+1]);
Alil = cond(ali]<BJi],round(A[i]+Valuelf(256)),All]);
out[i] = round(A[i]-BI[i]);

}

/IA[5]==BI5]

}

Fig. 5. RapidMind C++ glsl implementation support routines are equivalent to those given in[Higure 3. To ensure precise resultsungliciperations
are used. Although RapidMind provides an IF for operation on the GPU stream processomdfle operation is regarded as better. The() loops

are a coding convenience. RapidMind expands them before the compiled code is transfered to the&Btisib5 the twocond() statements only
change taB[i+1] andA[i] if their first argument is true. (If its false they effectively do nothing.) Ageimd() is seen as better thdR . Care must
be taken to ensure only the correct arguments are passed to the code since almost no validation is provided.

464

park_miller = RM_BEGIN {
InOut<Value4f> Seed;
Valueli I;
FOR(I=0,I<TIMES,I++) {
Valueli J;
FOR(J=0,J<TIMES2,J++) {
Valueli K;
FOR(K=0,K<TIMES3,K++) {

Park_Miller(Seed);

} ENDFOR
} ENDFOR
} ENDFOR

} RM_END

/I Access the internal arrays where the data is stored
Array<1,Value4f> Seed(NP);
float* in = Seed.write_data();
for (int i = 0; i<NP; i++) {
int t = park_miller_seed]i];
if(1(0<t && t<2147483647)) {
cout<<"Bad park_miller_seed i="<<i<<" "<<park_miller_seed[i]<<endl;
exit(1);}
for(int j=0;j<4;j++) {in[i*4+j] = t%256; t /= 256;}
}
Array<1,Value4f> Result;
Result = gpu->park_miller(Seed);
const float* result = Result.read_data();

Fig. 6. Parts of the RapidMind test harness. The lower code fragment passes a vétfanitil seed values to the GPUNP may be up to 4 million).
The GPU’s multiple stream processors simulate simultaneous parallel operation of NP processors. The codeR:tBESINand RM_ENDs run on

the GPU for each of the NP simulated processors. For test purposes iPaaksMiller() , the random number generator, many times. When the
GPU has finished the last random number created by each (simulated) processor is returned to the host CPU via a vectoNi@nt4hiedf values.
Despite the single precision code’s complexity, the GPU can run more than 40 times faster than the CPU.

465

	Introduction
	A C/C++ Park-Miller Implementation
	A GPU Random Number Implementation
	RapidMind C++ Random Number Validation and Performance
	Discussion
	Conclusions
	References

