
Implicit Test Oracles for Quantum Computing
William B. Langdon

Department of Computer Science
University College London, Gower Street

London, UK
w.langdon@cs.ucl.ac.uk

Abstract—Testing can be key to software quality assurance.
Automated verification may increase throughput and reduce
human fallibility errors. Test scripts supply inputs, run programs
and check their outputs mechanically using test oracles. In
software engineering implicit oracles automatically check for
universally undesirable behaviour, such as the software under
test crashing. We propose 4 properties (probability distributions,
fixed qubit width, reversibility and entropy conservation) which
all quantum computing must have and suggest they could be
implicit test oracles for automatic, random, or fuzz testing of
quantum circuits and simulators of quantum programs.

Index Terms—Qbit, QCVE, quantum fuzz testing, automatic
test oracles, QA, SUT, QSUT, information theory

I. INTRODUCTION

Testing is one of the main ways of verifying that software
is sound and does what it should. Conventionally this means
running it on one or more test cases and comparing its output
with the desired output. Which means that the test engineer
has to both specify the inputs to the program and its required
behaviour, typically as a set of inputs and outputs per test.
A test oracle is used to check the program’s behaviour. E.g. the
oracle checks that the program’s output is as expected.

If the program gives an acceptable answer for a test input
then the test oracle says the program has passed the test. If not,
the oracle says the software under test has failed. An automatic
test script may run the program on each of the available tests
in the test suite and count how many pass and how many fail
or it may be set to stop the first time the program fails a test.
The test suite may contain many test cases but often there
is no formal specification from which they could be derived.
Intensive testing can be effective, however it needs many tests
but it can be too labour intensive for a developer to write them
by hand.

It might be sufficient to generate test cases at random. If
not there are increasingly sophisticated tools, including fuzz
testing, for generating test inputs which exercise more of the
program. Fuzzing in particular has proved to be very success-
ful at finding bugs, even in mature software, by prolonged
exercising of the code. Fuzzing campaigns can be measured
in hours or even days. However often there is no easy way of
knowing in advance what output a program should give on a
mechanically generated input.

To avoid having to devise by hand a large number of test
cases with associated requirements on their answers, auto-
mated testing, particular fuzz testing uses implicit test oracles.
I.e., general automatic ways to recognise that the software

under test has misbehaved. Typical implicit oracles are: the
program should not crash, e.g. it should not cause a null
pointer exception (NPE) or segmentation error (segfault), and
it should not loop infinitely. Typically an implicit test oracle for
non-terminating programs imposes a program specific timeout
before which it should stop running. That is, an implicit oracle
is an automatic way of recognising software has failed which
holds for almost all software.

In the next section we proposed four implicit test oracles for
quantum circuits and simulators of quantum programs which
exploit properties all correct quantum programs must have.
Therefore, while they do not ensure that a quantum circuit
is correct, if they fail, we can be confident that something
is wrong somewhere. Section III discusses the difficulties of
converting these properties into implicit test oracles, which
may be useful for both random and quantum fuzz testing.
(Note Wang et al.’s QuanFuzz [1], [2] ensures the correct
answer is available, whilst Blackwell et al. [3] use differential
fuzzing, i.e. compare results from different simulators, rather
than using implicit oracles.)

II. IMPLICIT QUANTUM TEST ORACLES

A. Measurement is Probabilistic

At some point all quantum computation requires measure-
ments to be taken. Measurement of the quantum wave form
collapses it from a superposition of states to a definite
(classical) state. Which state is determined by a probability
distribution. Well designed quantum circuits will ensure that
the state corresponding to desired answer is highly probably.
However in practise, by repeated operation, it may be sufficient
that acceptable answers are simply more likely than others.
Nonetheless, both in simulation and in real quantum circuits
a probability distribution must have the following properties:

• probabilities cannot be negative or exceed 1.0
• probabilities must sum up to 1.0

If either property fails, then we can be confident that there is
an error somewhere. E.g. counting the states.

B. The Number of Q-Bits is Conserved

Although a quantum circuit can contain many different quan-
tum gates connected its Q-bits in many ways, at all times
the width (the total number of Q-bits) must be the same. For
example, if the input accepts three Q-bits then the circuit must
always be 3 Q-bits wide and it must generate three Q-bits of
output.

http://www.cs.ucl.ac.uk/staff/W.Langdon


C. Components of Quantum Circuits are Always Reversible

Unlike classical computing, quantum circuits are reversible.
Meaning if any given (test) superposition of states is injected
into any quantum circuit and gives rise to a superposition at
the output (result), then feeding the result superposition into
the output will give again give rise to the test superposition at
the input.

Further, this is true of any fragment of the circuit, including
individual quantum gates.

D. Quantum Reversibility Means No Entropy Change

Shannon entropy is a useful measure of information con-
tent [4]. The entropy of a probability distribution is
−
∑

pi log2(pi). Where the sum is over the whole distribution
and pi is the probability of event i. Using log2 (logarithm to
the base 2) means information content is expressed in terms
of number of bits. The use of product and logarithms means
entropy is a real number and can give non integer results.

Excluding measurements, in quantum circuits no informa-
tion is lost. Which means the entropy of a quantum (reversible)
circuit’s input is the same as the entropy of its output.

This is very different from normal (irreversible) computing,
where instead of having a one-to-one mapping of input-
to-output it is very common that a program can generate
the same output for many inputs. E.g. the integer divide-
by-two program outputs 1 for both input 2 and 3. Thus
for a uniform distribution of inputs from 0 to 3, the input
entropy is −

∑
1/4 × log2 1/4 = 2 bits. But there are only

two possible outputs (0 and 1) and they are equally likely
(entropy = −

∑
1/2×log2 1/2 = 1 bit). Therefore the program

has lost entropy (input 2.0 bits ⇒ output 1.0 bits).
In non-quantum programs, it is very common for many

inputs to give the same answer. (They are n-to-1, where n can
be huge). E.g., given random text as input a program to check
spelling will often say the text is not valid english. That is,
there are a huge number of inputs which producing the same
“not valid” answer. Supposing the random text contains m
words which are equally likely, the entropy of the input will
be log2 m bits but if the program only produces either “valid”
or “not valid” answers. The entropy of the output is at most
one bit. Meaning almost all the entropy of the input has been
lost. This is typical of ordinary everyday mundane computing.

Notice with quantum computing we have to be careful how
we calculate entropy, particularly whether we include mea-
surement or not. Once measurements are taken the circuit is
not reversible and the traditional entropy calculations (above)
can be used and the implicit entropy test oracle must report
an error if entropy increases

Entropy is a property of distributions and for the quantum
part of the circuit, we must be clear that entropy is taken over
the distribution of distributions of entangled states. I.e. entropy
is calculated over the distribution of probability distributions.
Since a quantum circuit is reversible it must be n-to-n, so there
must be as many distributions of quantum superpositions at its
output as there are at its input. Entropy potentially gives an
easy way of applying a sanity check on what could quickly

turn into an exponentially large number of different probability
distributions. Note for the quantum circuits the implicit entropy
test oracle must report an error if entropy either increases or
decreases.

We can think of entropy as measuring information content.
Reversible (quantum) computing does not loose information,
therefore there can be no lost of entropy. So if entropy
has changed, this means there is an error somewhere and a
quantum fuzzer could potentially use this as another way to
automatically flag errors.

III. DISCUSSION: USING IMPLICIT Q-ORACLES

In some domains, particularity discovering potentially security
issues, fuzz testing of system utilities written in high level
languages, has been very successful. Fuzz testing initially
blindly exercises the software under test but unlike simple
random testing, it is designed to exploit knowledge of the
SUT’s source code to create new tests that run parts of the
code that have not been used much so far. Since the fuzzer
knows only the test inputs, it cannot know the correct answer
but instead relies of implicit test oracles, such as the program
failed (e.g. crashed with a non-existent memory error, NPE)
to flag interesting problems to the test engineer.

Fuzz testing has already be proposed for testing quantum
simulators (Section I), but so far has not used implicit quantum
test oracles. The previous section lists properties of quantum
computing which might be recast in the form of implicit
quantum test oracles:

It would seem that it should be straight forward to code a
quantum test oracle for Section II-A (probability distributions)
as a sanity check which checks every probability lies in
the range 0 to 1.0 and together they sum to 1.0. However,
perhaps a little care is needed to ensure actual calculations
are within some epsilon and choosing an appropriate epsilon.
Such checks should have little overhead and might be left in
the source code even after development.

Similarly checking the width of the quantum circuit at the
output is the same as that at the start (Section II-B) would
seem simple and impose little overhead. Perhaps such sanity
checks would be most useful at the circuit design stage, before
the circuit is assembled or the full simulator is run.

Checking that a simulator can indeed be run backwards
(Section II-C) would perhaps have too high an overhead
to be done during normal operation. Indeed a certain care
would be needed to choose both epsilon and the number of
forward and backward runs. For both real circuits and well
structured software simulators, we would expect reversibility
to be checked at the base components (e.g. quantum gates)
and possibly at intermediate levels before system tests of the
complete circuit and simulator. Although testing simulators
is always difficult, Section II-C offers the gold standard of
a known non-trivial system wide result, which could give
confidence in the soundness of any quantum simulator.

Unlike our other quantum properties, entropy conservation
(Section II-D) requires multiple simulation runs. However it
imposes little overhead and so data could be collected on each



run and entropy conservation checked at a latter state. Again
(Section II-A) we are dealing with real number calculations
of probability distributions so there may be a degree of
pragmatism in choosing the number of runs and epsilon.
Nevertheless conservation of entropy offers the gold standard
reassurance associated with meeting a known requirement.

IV. CONCLUSIONS

Sections II-A to II-D described universal properties of quan-
tum circuits and therefore properties that simulators of quan-
tum circuits (subject to the fidelity of the simulation) must
also have.

Existing implicit test oracles (e.g. null pointer exceptions
(NPE), segmentation errors (segfaults) and timeouts) can be
thought of as checks that software is well coded; the four
implicit quantum test oracles (Section III) can be thought of
as checking the quantum simulation as well as its implemen-
tation. In practise both types should be deployed.

REFERENCES

[1] J. Wang, M. Gao, Y. Jiang, J. Lou, Y. Gao, D. Zhang, and J. Sun,
“QuanFuzz: Fuzz testing of quantum program,” arXiv 1810.10310, 16
Oct 2018. [Online]. Available: https://arxiv.org/abs/1810.10310

[2] J. Wang, F. Ma, and Y. Jiang, “Poster: Fuzz testing of quantum
program,” in 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST), Porto de Galinhas, Brazil, 12-16
April 2021, pp. 466–469, see also arXiv 1810.10310. [Online]. Available:
http://dx.doi.org/10.1109/ICST49551.2021.00061

[3] D. Blackwell, J. Petke, Y. Cao, and A. Bensoussan, “Fuzzing-based
differential testing for quantum simulators,” in 16th International
Symposium on Search-Based Software Engineering (SSBSE) - Challenge
Track, ser. LNCS, G. Jahangirova and F. Khomh, Eds., vol. 14767.
Porto de Galinhas, Brazil: Springer Nature, 14 July 2024, pp. 63–69.
[Online]. Available: http://dx.doi.org/10.1007/978-3-031-64573-0 6

[4] C. E. Shannon and W. Weaver, The Mathematical Theory of
Communication. Urbana, Il, USA: The University of Illinois Press,
1964. [Online]. Available: http://www.press.uillinois.edu/books/catalog/
67qhn3ym9780252725463.html

https://arxiv.org/abs/1810.10310
http://dx.doi.org/10.1109/ICST49551.2021.00061
http://dx.doi.org/10.1007/978-3-031-64573-0_6
http://www.press.uillinois.edu/books/catalog/67qhn3ym9780252725463.html
http://www.press.uillinois.edu/books/catalog/67qhn3ym9780252725463.html

	Introduction
	Implicit Quantum Test Oracles
	Measurement is Probabilistic
	The Number of Q-Bits is Conserved
	Components of Quantum Circuits are Always Reversible
	Quantum Reversibility Means No Entropy Change

	Discussion: Using Implicit Q-Oracles
	Conclusions
	References

