
Continuous Optimisation Theory Made Easy?

Finite-element Models of Evolutionary

Strategies, Genetic Algorithms and

Particle Swarm Optimizers

R. Poli1, W. B. Langdon2, M. Clerc3, and C. R. Stephens4

1 Department of Computer Science, University of Essex, UK
2 Independent Consultant, Groisy, France

3 Instituto de Ciencias Nucleares, UNAM, México

Abstract. We propose a method to build discrete Markov chain models
of continuous stochastic optimisers that can approximate them on arbi-
trary continuous problems to any precision. We discretise the objective
function using a finite element method grid which produces correspond-
ing distinct states in the search algorithm. Iterating the transition matrix
gives precise information about the behaviour of the optimiser at each
generation, including the probability of it finding the global optima or
being deceived. The approach is tested on a (1+1)-ES, a bare bones PSO
and a real-valued GA. The predictions are remarkably accurate.

1 Introduction

Markov chains are important in the theoretical analysis of evolutionary algo-
rithms operating on discrete search spaces. So far they have been of little use for
EAs searching on continuous spaces. Naturally, Markov chains with continuous
state spaces can be defined and powerful general results have been obtained us-
ing them [14]. However, the complexity of the calculations involved makes them
less than ideal for the detailed theoretical analysis of continuous optimisers. In-
stead a variety of different tools have been used. Despite these, generally making
theoretical progress in the continuous domain is extremely difficult. As a result,
while there are a few continuous domain optimisers, such as evolutionary strate-
gies [2], for which we have a reasonably clear mathematical understanding, in
most other cases, the reasons why an algorithm works (or does not) are totally
unclear. For example, how differential evolution [16] works is considered by most
to be a mystery. In other cases, detailed models of only some components of an
algorithm are available, as in the case of genetic algorithms applied to continuous
functions [12].

Even where substantial theoretical progress has been made, this has virtually
always required either working at a highly abstract level or considering in detail
very special cases. For example, in evolutionary strategies, most theory has been
restricted to the class of sphere functions. While in the case of particle swarm

optimisers, the theory available (see for example [13, 5, 19, 18]) assumes: isolated
single individuals, the search stagnates (i.e., no improved solutions are found)
and, until very recently, even that there is no randomness. (In general none
of these are true.) So, there is a large gap between theory and practice for
continuous optimisers.

We suggest an idea which has the potential to radically improve the situation.
It is general and can be applied to most continuous optimisers and arbitrary
fitness functions. The inspiration has come from the Finite Element Method.
FEM has been very successfully used to model continuous systems in a variety of
disciplines [3]. It divides continuous systems into elements. These are sufficiently
small that the behaviour of each can safely be modelled by a numerically simple
function and so the whole system is accurately modelled by simply combining
all its elements. Naturally, the accuracy of the results depends on the resolution
of the mesh of elements used (which can be different for different parts of the
system). When the mesh is fine enough, the analysis can be extremely accurate.

We discretise the system (in our case, the optimisation algorithm and the
fitness function) and then study the dynamics of the discretised system (see
Section 2). The new system is in one of a finite number of states. Crucially
we will assume the optimisation algorithm’s future behaviour can be captured
by the current state. This is true of most evolutionary algorithms, which only
depend on the current population and not on older populations. Hence we can
model the new system as a Markov chain. By studying the chain we can then
learn about the behaviour of the original (continuous) system. As we will see
there is a notion of resolution. If the discretisation mesh is chosen appropriately,
the accuracy with which the chain models the continuous system, over many
generations, sometimes even for quite coarse grids can be remarkable.

This gives us an effective general technique to produce discrete Markov chain
models of continuous stochastic optimisers that can approximate them on con-
tinuous problems to arbitrary precision and for arbitrary fitness functions. The
model is complete and includes the ability to estimate arbitrary statistics, such
as the evolution of average fitness, best fitness and population diversity. In par-
ticular, it is very easy to estimate the probability of an optimiser finding global
optima or being deceived.

Our objective is to introduce the idea and to provide a proof of concept
for it. So, we will apply the approach to a small, but diverse set of optimisers
– (1+1) Evolutionary Strategies (Section 3), Particle Swarm Optimisers (Sec-
tion 4) and real-valued Genetic Algorithms(Section 5) – and show how easily we
can estimate important properties such as the probability of finding the global
optimum and the expected runtime of each algorithm (Section 6). We will con-
sider four different problems and will compare the behaviour of the resulting
chains with actual runs (Section 7). We postpone the analysis and comparison
of the resulting models. We draw some conclusions in Section 8.

2 Discretisation

We can obtain a discrete model of a continuous optimiser in two ways. Firstly, we
can perform a formal FEM approximation of the exact Markov chain representing

the optimiser over continuous search/state-spaces. We illustrate this approach in
Section 2.1. Secondly, we can construct a discrete approximation of the optimiser
and then obtain an exact model for an approximation of the optimiser as shown
in Section 2.2. As we will see, when piecewise constant functions are used in
FEM, the two approaches lead to the same type of model: a discrete Markov
chain.

2.1 FEM approximation of exact Markov chain

Rudolph’s EA model Let us recall the key elements of the generic model of EA
presented by Rudolph in [14]. In this model the EA is seen as a homogeneous
Markov chain (Xt : t ≥ 0) on a probability space (Φ,F , P) with image space
(E,A), where Φ is the set of outcomes, F is the set of events (subsets of Φ)
and P is a probability measure. Formally F must be a σ-algebra over Φ, i.e.,
it must be closed under complementation and countable unions of its members,
and P : F → [0, 1] must be a measure and P(Φ) = 1. The set E is the state
space for the system, while A is a σ-algebra over E. Since an EA consists of a
population of N individuals represented by the N -tuple (x1, · · · , xN), where the
xi belong to some domain M (e.g., M = R) for i = 1, · · · , N , typically the state
space is E = MN , but there are more complex cases.

In Rudolph’s EA model the probabilistic modifications on the population
caused by the genetic operators are represented by a stochastic kernel K(., .).
The map K : E×A → [0, 1] is termed a Markovian kernel for the chain if K(., A)
is measurable for any fixed set A ∈ A and K(x, .) is a probability measure on
(E,A) for any fixed state x ∈ E. In particular, K(xt, A) = P{Xt+1 ∈ A|Xt = xt}.

The t-th iteration of the Markovian kernel given by

K
(t)(x, A) =

{

K(x, A) if t = 1,
∫

E
K

(t−1)(y, A)K(x, dy) if t > 1,
(1)

describes the probability of the EA’s state being in some set A ⊆ E within t
steps when starting from the state x ∈ E, i.e., K

(t)(x, A) = P{Xt ∈ A|X0 = x}.
Let π(.) denote the initial distribution over subsets A of A, e.g., the proba-

bility distribution for the initial population at step t = 0. Then

P{Xt ∈ A} =

{

π(A) if t = 0,
∫

E
K

(t)(y, A)π(dy) if t > 0.
(2)

FEM applied to Rudolph’s model The starting point of FEM is the def-
inition of a mesh and the assumption that the solution to the problem can be
expressed as a piecewise linear, quadratic, or higher order function over the mesh.

There is no limitation as to the simplicity (or complexity) of the elements. They
can even be constant. This is the type of elements we will use here, although one
could extend the results to the case of more sophisticated elements.

In the case of an EA or other stochastic optimiser exploring a continuous
search/state space, the function P{Xt ∈ A} in (2) provides a full probabilis-
tic description of the system. This is, however, clearly a function of the kernel
K

(t)(x, A) in (1). We will therefore take the latter as the solution of our problem
that we will represent by finite elements.

Let us assume that E is divided up into n disjoint sets Ei such that
E =

⋃

i Ei. These represent our mesh. We assume that the family of functions
K

(t)(x, A) is piecewise constant on each element, i.e., ∀t, ∀i, ∀x′, x′′ ∈ Ei, ∀j :
K

(t)(x′, Ej) = K
(t)(x′′, Ej).

Let us now focus on A’s which are obtained as the union of some Ei, i.e., A =
⋃

i∈I Ei, where I ⊆ {1, · · · , n}. Then we can write P{Xt ∈ A} =
∑

i∈I P{Xt ∈
Ei}. We can, therefore, focus our attention on the quantities P{Xt ∈ Ei}. For
t > 0, from (2) we obtain

P{Xt ∈ Ei} =

∫

E

K
(t)(y, Ei)π(dy)

=
∑

j

∫

Ej

K
(t)(y, Ei)π(dy)

=
∑

j

∫

Ej

K
(t)(yj , Ei)π(dy)

=
∑

j

K
(t)(yj , Ei)π(Ej)

where yj is any representative element of the set Ej (e.g., its centroid, if the set
is compact). From (1) we obtain

K
(t)(yj , Ei) =

∫

E

K
(t−1)(y, Ei)K(yj , dy)

=
∑

n

∫

En

K
(t−1)(y, Ei)K(yj , dy)

=
∑

n

∫

En

K
(t−1)(yn, Ei)K(yj , dy)

=
∑

n

K
(t−1)(yn, Ei)

∫

En

K(yj , dy)

=
∑

n

K
(t−1)(yn, Ei)K(yj , En)

If M is a matrix with elements mij = K(yj , Ei) we have that K
(t)(yj , Ei) is

the (i, j)-th of M t and P{Xt ∈ Ei} is the i-th element of M tp, where p is a
vector whose elements are π(Ei). That is, the FEM approximation with order-0

elements to Rudolph’s exact EA model is an ordinary discrete Markov chain.

2.2 Exact Markov model of approximate optimiser

An alternative to using FEM is to first obtain a discrete optimiser whose be-
haviour strongly resembles the behaviour of the original (continuous) optimiser,
and then use standard-type Markov chain theory to model such an optimiser.
This approach effectively stands to the previous as the finite difference method
(FDM) stands to FEM. FDM is a method for integrating differential equations.
The difference between FEM and FDM is that, while in FEM one approximates
the solution to a problem, in FDM one discretises the equations of motion of the
system. However, it is well known that in certain conditions, e.g., when using
piecewise constant functions like we did in Section 2.1, the two methods coincide.
Because of its simplicity in the remainder of the paper we will use the second
approach.

Fitness Function f Discretisation We partition a continuous N -dimensional
search space Ω into a finite number (n) of compact non-overlapping sub-domains
Ωi. We give each sub-domain Ωi a fitness value fi, which can be computed as
the mean of f over Ωi, i.e., fi =

∫

Ωi
f(x)dx/

∫

Ωi
dx, or simply fi = f(xci

) where

xci
is the centroid of cell i, i.e., xci

=
∫

Ωi
xdx/

∫

Ωi
dx. We will call the pair

Si = (Ωi, fi) a plateau. So, effectively we turn our continuous fitness function into
a piecewise-constant function, which looks like a multidimensional histogram.

If, for example, we consider the case where Ω is a N -dimensional cube which
we partition using a regular grid of hypercubic cells, then we can represent each
sub-domain as

Ωi = [xci1
− r, xci1

+ r] × [xci2
− r, xci2

+ r] × · · · × [xciN
− r, xciN

+ r] (3)

where r is the cell “radius” and xcij
is the j-th component of a lattice point xci

(the centroid of each sub-domain). So, when r is known and fixed, we can simply
represent each plateau using its centroid and fitness value. That is Si = (xci

, fi).
Figure 1 shows two one-dimensional fitness functions and two corresponding
piecewise-constant functions obtained by discretising them with r = 0.25.

Naturally, the choice of the mesh is crucial in determining the accuracy of
the resulting model. Clearly, the finer the grid, the more accurate the results.
However, also the method with which the fitness of plateaus is computed is
important. When these are computed with fi = f(xci

), as we will do in the rest
of the paper, we run the risk of missing important landscape features of sub-
element size. This is less likely when fi is mean of f over Ωi. The disadvantage
of this method is that one needs to compute integrals of the fitness function.

Algorithm Discretisation Most optimisers store information about one or
more points in Ω which are used to determine which areas of the search space
to sample next. Let us assume that there are P such points, which we will call a
population. The population is the state of the optimiser. To discretise the opti-
miser we need to discretise its population s so that instead of taking continuous

values it can only take a finite number of states. We use the same discretisa-
tion mesh {Ωi} as for the fitness function. So, in the discretised optimiser the
population s is in one of the states {xci

}P .
Some optimisers use additional variables and parameters to control the

search, and these are often adapted dynamically. E.g., an ES may change the
mutation strength, while the velocities of the particles change in a PSO. When
these quantities adapt during the search they are part of the state of the algo-
rithm. Hence they must also be discretised but the lattice used will depend upon
the algorithm.

We should note that both discretisation methods discussed above assume
that the search is contained within a finite domain Ω (typically a multidimen-
sional box). This is what most problems require and what many optimisers do.
However, some optimisers have unbounded state spaces. So, one cannot be sure
whether a certain state variable will stay permanently in pre-defined bounds.
There are many strategies to circumvent this problem. One could, for example,
use boundary elements of infinite size (but with an artificial, finite, centroid),
or use mapping/squashing functions to map an infinite space into a new, finite
one. These and other strategies put forward in the FEM community (e.g., [1, 7,
6, 17]), however, are beyond the scope of this article.

3 Evolutionary Strategy Model

To start with, let us consider the simplest possible evolutionary strategy: a
(1+1)-ES with Gaussian mutations but without adaptation of the mutation stan-
dard deviation σ.

Naturally, at any given time the only member of the population, xp, will be
located in some sub-domain Ωi. After discretisation, xp can only take one of a
discrete set of values, namely xp = xck

for k in {1, · · · , n}. So, our (1+1)-ES can
only be in one of n states. We will indicate the state of the ES with an integer s.

Our objective is to model this simple ES as a Markov chain with states of this
form. What we need to do is to compute the state transition matrix M = (mij),
where mij is the probability of the ES moving from state i to state j at the next
iteration. When M is available, we can compute the probability distribution πt

of the discretised ES being in any particular state at generation t, given its state
probability distribution at the start, π0, from πt = M tπ0.

Let p(x|xp) be the sampling probability density function when the parent is
xp. Normally in an (1+1)-ES random numbers are chosen independently for each
dimension when computing mutants. In our discretised ES we do the same thing.
So, we have separability of p. That is, p is given by a product of independent
probability distributions for each separate dimension:

p(x|xp) =
N
∏

j=1

p(xj |xpj
)

where xj and xpj
are the j-th components of the vectors x and xp, respectively.4

The probability of sampling sub-domain Ωi is given by

Pr(Ωi|xp) =

∫

Ωi

p(x|xp) dx

So, if sub-domains Ωi have the product structure shown in Equation 3, we have

Pr(Ωi|xp) =
∏

j

Pr([xcij
− r, xcij

+ r]|xpj
) (4)

where

Pr([xcij
− r, xcij

+ r]|xpj
) =

∫ xcij
+r

xcij
−r

p(xj |xpj
) dxj . (5)

The standard sampling distribution used in the ES is a Gaussian distribution,

i.e., p(xj |xpj
) = G

(

xpj
, σ
)

with G(µ, σ) = 1√
2π σ

e−
(x−µ)2

2σ2 . Let erf be the integral

of the Gaussian distribution. Therefore,

Pr([xcij
− r, xcij

+ r]|xpj
)

=
1

2

(

erf

(

xcij
+ r − xpj

σ
√

2

)

− erf

(

xcij
− r − xpj

σ
√

2

))

. (6)

Let us now put the sub-domains in order of their fitness so that fi ≤ fj for
i < j. Since the population can only change if there is a fitness improvement,
only certain state transitions can occur. That is, a transition from state s to
state s′ is possible only if s ≤ s′.

Suppose the parent is in domain k, then the probability of it changing to
domain l is given by:

Pr(l|k) =

Pr(Ωl|xck
)

if l and k are such that fl > fk (NB: fl >
fk =⇒ l > k but not vice versa),

0 if k 6= l and fl ≤ fk,

1 −∑l:fl>fk
Pr(l|k)

if l = k, to guarantee the conservation of
probability.

This effectively means that the population remains in domain k if any of the
following three conditions is met: (a) the new sample is in Ωk, (b) the new sample
is in an Ωj (different from Ωk) with fj ≤ fk, or (c) the sample is outside Ω. So,
we can then write the state transition probability for the ES as

ms,s′ = Pr(s′|s) = Pr(Ωs′ |xcs
)δ(fs′ > fs)+(1−

∑

l:fl>fs

Pr(Ωl|xcs
))δ(s′ = s), (7)

where Pr(Ωs′ |xcs
) and Pr(Ωl|xcs

) can be computed using Equations 4 and 6.
The function δ(z) returns 1 if z is true and 0 otherwise.

4 Note that, while separability of the sampling distribution makes the model’s calcu-
lations simpler, it is not a requirement.

As an example, consider a domain Ω = [−2, 2] × [−2, 2] = [−2, 2]2, and let
us divide it into four squared sub-domains Ω1 = [−2, 0)2, Ω2 = [−2, 0) × [0, 2],
Ω3 = [0, 2] × [−2, 0), and Ω4 = [0, 2]2 of radius r = 1. These have centroids
xc1 = (−1,−1), xc2 = (−1, 1), xc3 = (1,−1) and xc4 = (1, 1). Let us further
assume that the fitness function f takes the following values at the centroids:
f1 = 1, f2 = 2, f3 = 3, and f4 = 4. Then by applying the equations above, for
σ = 1, we obtain the transition matrix:

M =

0.9499 0.0000 0.0000 0.0000
0.0232 0.9731 0.0000 0.0000
0.0232 0.0037 0.9768 0.0000
0.0037 0.0232 0.0232 1.0000

.

By iterating the corresponding chain one can compute the distribution of states
of our discretised fixed-σ ES acting on fitness function f at any generation. How-
ever, given the very low resolution chosen, we would not expect the predictions
of the chain to exactly reflect the real behaviour of the continuous optimiser.
As we will see later, however, with higher resolutions, predictions can be very
accurate.

Let us now generalise this model to include a more interesting version of
(1+1)-ES: one where σ adapts during evolution. To keep our description sim-
ple, we will focus on an adaptive scheme which updates σ at each iteration [2,
page 84]. If the offspring produced by mutation is better than its parent (and is
in Ω) we increase σ according to the rule σ′ = σc where c is a suitable constant
> 1. If, the offspring is invalid or is not better than the parent, we reduce σ
using the rule σ′ = σ/c.

Naturally, for this new ES we can still discretise the parent individual using
the regular mesh adopted for the fitness function, as we did for the fixed-σ case.
However, we will use a non-uniform discretisation for σ. Indeed, it is apparent
that σ can only take discrete values already, all σ’s being of the form σ = σ0 · ci

for some integer i, where σ0 is the value of σ at generation 0. So, in any finite run
of G generations, σ ∈ {σ0 · c−G, σ0 · c−G+1, · · · , σ0 · cG}, that is it can only take
2G+1 different values. Following standard practice, in our ES we will limit σ so
that it never becomes too little or too big. This effectively means that we can use
a smaller range {σ0·c−Z , σ0·c−Z+1, · · · , σ0·cZ}, with Z < G. So, we can represent
the state of the ES with the tuple (s1, s2), where s1 ∈ {1, · · · , n} represents the
position of the parent and s2 ∈ {−Z, · · · , Z} gives the mutation σ used to create
its child. For the purpose of indexing the elements of the array M , we then
convert tuples into natural numbers by using the odometer ordering, whereby
(1,−Z) maps to 1, (1,−Z+1) maps to 2, etc. (i.e., (s1, s2) 7→ (2Z+1)s1+s2−Z).

The calculations to compute M for the adaptive ES are based on the applica-
tion of Equation 7, with minor changes. Firstly, when we compute the probability
of a transition from state s = (s1, s2) to state s′ = (s′1, s

′
2), we use the σ corre-

sponding to s2, i.e., σ = σ0 ·cs2 . Secondly, for all state pairs where s1 < s′1 (there
was a fitness improvement) but where s′2 6= s2 + 1 (σ was not increased accord-
ing to our update rule), we know that ms,s′ = 0, so we don’t apply Equation 7.
Likewise, for all state pairs where s1 ≥ s′1 and where s′2 6= s2 − 1.

4 Particle Swarm Optimisation Model

4.1 Background

Particle Swarm optimisers (PSOs) [8, 10] have been with us a few years. However
it is fair to say that most work on PSOs has been experimental confirmations of
their effectiveness, extensions to new applications or new algorithms. With very
few exceptions (e.g., see the dynamical system model in [5, 18] or the probabilistic
stagnation analysis in[4]), analytical, theoretical and mathematical analysis of
them is still relatively unexplored.

In a simple PSO, the swarm consists of a population of identical particles
which move across a problem landscape looking for high-fitness regions. The
particles have momentum and are accelerated by forces applied to them. The
PSO’s integration of Newton’s laws of motion is discrete and the particles only
sample the fitness landscape at discrete time steps. Thus the PSO particles draw
samples from the search space only at some points in their trajectories. In the
classic PSO, there are two attractive forces. The first pulls the particle towards
the best point it personally has ever sampled, whilst the second pulls it towards
the best point seen by any particle in its neighbourhood. The strengths of the
various forces are randomly controlled. It is the stochastic nature of the PSO
which allows it to effectively explore and ensures that the loci of the particles
are not closed trajectories. Instead, the particles randomly sample the region
nearby and between the particle’s own best and the swarm best.

One of the recent advances has been Jim Kennedy’s “Bare Bones” PSO
(BB-PSO) [9]. This optimiser is inspired by the observation that, at least until
a better location in the search space is sampled, the pseudo chaotic particle
orbits can be approximated by a fixed probability distribution centred on the
point lying halfway between the particle best and the swarm best. Its width is
modulated by the distance between them. The exact nature of the distribution is
not clear: it is bell shaped like a Gaussian distribution [11] but the tails appear
to be heavier, like a Cauchy distribution. The essential “bare bones” PSO, cuts
out the integration needed to find each particle’s position, and instead draws it
from a random distribution. This means we no longer need to track exactly each
particle’s position and velocity. As with other swarm intelligence techniques,
there has been little theoretical work on this essential PSO. The model we are
about to present addresses this.

4.2 Model of “bare bones” PSO

Let us consider a fully-connected bare bones PSO to start with. In this PSO
the particles have no dynamics, but simply sample the neighbourhood of their
personal best and swarm best using a fixed probability density function. This
continues until either their personal best or the swarm best is improved. When
this happens, the parameters of the sampling distribution are recomputed and
the process is restarted.

In the unlikely event that more than one particle’s personal-best fitness is
the same as the best fitness seen so far by the whole swarm, we assume that
swarm leadership is shared. That is, each particle chooses as its swarm best a
random individual out of the set of swarm bests.

Naturally, at any given time the personal best for each particle and the
swarm best will be located in some sub-domain Ωi. In a discretised BB-PSO
both the particle best xp and swarm best xs can only take one of a discrete set
of values, namely xp = xck

and xs = xcj
for some j and k in {1, · · · , n}. So,

the discretised algorithm can only be in a finite set of states. However, we don’t
need to represent explicitly the swarm best, since the information is implicit in
the fitness values fi associated to each centroid. So, if P is the population size,
there are nP such states – one for each particle’s personal best – and we can
represent states as P dimensional vectors with integer elements, e.g.

s = (s1, · · · , sP).

Let us now focus on computing state transition probabilities.
Let p(x|xs, xp) be the sampling probability density function when swarm

best is xs and particle best is xp. The standard sampling distribution used in
the BB-PSO is a Gaussian distribution. (Our approach could also be applied to
Cauchy or other distributions.) So, we have

p(xj |xsj
, xpj

) = G

(

xsj
+ xpj

2
,
∣

∣xsj
− xpj

∣

∣

)

.

Note that this distribution becomes a Dirac delta function when xsj
= xpj

.
Normally in PSOs random numbers are chosen independently for each dimension
when computing force vectors. In a bare bones PSO we do the same thing. So,
again we have separability of p and we can write

p(x|xs, xp) =

N
∏

j=1

p(xj |xsj
, xpj

)

where xj , xsj
, and xpj

are the j-th components of the vectors x, xs and xp,
respectively.

Similarly to the ES case, the probability of sampling domain Ωi is given by
the integral of p across Ωi, and, if sub-domains Ωi have the product structure
shown in Equation 3, we have

Pr(Ωi|xs, xp) =
∏

j

Pr([xcij
− r, xcij

+ r]|xsj
, xpj

) =
∏

j

∫ xcij
+r

xcij
−r

p(xj |xsj
, xpj

) dxj .

(8)
For a Gaussian sampling distribution we have

Pr([xcij
− r, xcij

+ r]|xsj
, xpj

)

=

1
2

(

erf

(

xcij
+r−

xsj
+xpj

2
∣

∣xsj
−xpj

∣

∣

√
2

)

− erf

(

xcij
−r−

xsj
+xpj

2
∣

∣xsj
−xpj

∣

∣

√
2

))

if xsj
6= xpj

,

δ(xpj
∈ [xcij

− r, xcij
+ r]) otherwise.

Again, let us order sub-domains so that fi ≤ fj for i < j. Since particle
personal bests can only change if there is a fitness improvement, only certain
state transitions can occur. That is, a transition from state s = (s1, · · · , sP) to
state s′ = (s′1, · · · , s′P) is possible only if s1 ≤ s′1, s2 ≤ s′2, etc. We will denote
this by s ≤ s′.

Let us identify the location of the swarm best for a PSO in a state s. Typically
in a fully-connected PSO there is only one particle with the best fitness value,
but, within a discretised PSO, it is not uncommon to have more than one. So,
in general, we have a set of swarm bests:

B(s) =
⋃

i:f(si)=fm(s)

{si}

where fm(s) = maxj fsj
and |B(s)| ≥ 1. More generally, to allow other commu-

nication topologies, we need to talk about sets of neighbourhood bests – one set
for each particle. We will denote these sets as B(s, i), for i = 1, · · · , P .

Let us consider a PSO in state s. In a BB-PSO, at each iteration, the particles
sample the search space independently. So, if the i-th particle’s best is in plateau
k (that is, si = k), then the probability of it changing to plateau l is given by:

Pr(l|B(s, i), k) =

1
|B(s,i)|

∑

b∈B(s,i) Pr(Ωl|xcb
, xck

)
if l and k are such that
fl > fk,

0 if k 6= l and fl ≤ fk,

1 −∑l:fl>fk
Pr(l|B(s, i), k)

if l = k (to guarantee
the conservation of proba-
bility).

Like for the ES case, this effectively means that the particle remains in plateau
k if any of the following three conditions is met: (a) the new sample is in Ωk, (b)
the new sample is in an Ωj (different from Ωk) with fj ≤ fk, or (c) the sample
is outside Ω.

Because of the independence of the particles (over one time step), we can
then write the state transition probability for the whole PSO as

ms,s′ =
∏

i

Pr(s′i|B(s, i), si)

=
∏

i:fs′
i
>fsi

1

|B(s, i)|
∑

b∈B(s,i)

Pr(Ωs′

i
|xcb

, xcsi
)

×
∏

i:fs′
i
≤fsi

1 −
∑

l:fl>fsi

1

|B(s, i)|
∑

b∈B(s,i)

Pr(Ωl|xcb
, xcsi

)

 δ(s′i = si)

 .

Naturally, further decompositions can be obtained using Equation 8.
As an example, let us consider again the domain Ω = [−2, 2]2, which we

divide into four sub-domains Ωi of radius r = 1, with centroids xc1 = (−1,−1),

xc2 = (−1, 1), xc3 = (1,−1), xc4 = (1, 1) and associated fitness f1 = 1, f2 = 2,
f3 = 3, and f4 = 4, respectively.

If the population includes only two particles (P = 2), then we have only 16
different states for the PSO: (1,1), (1,2), ..., (4,4). For example, the state (1, 1)
represents the situation where both particles are in the lowest plateau (so, both
are swarm bests); in state (1, 2) one particle is in the lowest plateau, while the
other (the swarm best) is in the second lowest plateau; etc.

By applying the previous equations we can then obtain the following transi-
tion matrix:

(1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1) (4, 2) (4, 3) (4, 4)
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1, 1)

0 0.659 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1, 2)

0 0 0.659 0 0 0 0 0 0 0 0 0 0 0 0 0 (1, 3)

0 0 0 0.651 0 0 0 0 0 0 0 0 0 0 0 0 (1, 4)

0 0 0 0 0.659 0 0 0 0 0 0 0 0 0 0 0 (2, 1)

0 0.341 0 0 0.341 1 0 0 0 0 0 0 0 0 0 0 (2, 2)

0 0 0 0 0 0 0.766 0 0 0 0 0 0 0 0 0 (2, 3)

0 0 0 0.117 0 0 0 0.659 0 0 0 0 0 0 0 0 (2, 4)

0 0 0 0 0 0 0 0 0.659 0 0 0 0 0 0 0 (3, 1)

0 0 0 0 0 0 0 0 0 0.766 0 0 0 0 0 0 (3, 2)

0 0 0.341 0 0 0 0.117 0 0.341 0.117 1 0 0 0 0 0 (3, 3)

0 0 0 0.117 0 0 0 0 0 0.117 0 0.659 0 0 0 0 (3, 4)

0 0 0 0 0 0 0 0 0 0 0 0 0.651 0 0 0 (4, 1)

0 0 0 0 0 0 0 0 0 0 0 0 0.117 0.659 0 0 (4, 2)

0 0 0 0 0 0 0.117 0 0 0 0 0 0.117 0 0.659 0 (4, 3)

0 0 0 0.117 0 0 0 0.341 0 0 0 0.341 0.117 0.341 0.341 1 (4, 4)

where we have added one extra row and column to more clearly identify states.

5 Real-valued Genetic Algorithm Model

We consider a simple real-valued GA with finite population, fitness proportionate
selection, no mutation, and 100% recombination. Recombination produces the
offspring, o = (o1, · · · , on), by sampling uniformly at random within the hyper-
parallelepiped defined by the parents, p′ = (p′1, · · · , p′N) and p′′ = (p′′1 , · · · , p′′N).
That is, oi = ρi(p

′′
i − p′i) + p′i, where ρi is a uniform random number in [0, 1] for

i = 1, · · · , N . We will refer to this type of recombination as blend crossover.
We use the same state representation as for BB-PSO, s = (s1, · · · , sP), except

that we interpret each si as the position of an individual in the search space,
rather than a particle’s best.

The (offspring) sampling distribution for parents p′ and p′′ under blend re-
combination is

p(o|p′, p′′) =
∏

i

p(oi|p′i, p′′i)

where

p(oi|p′i, p′′i) =

{

1/|p′i − p′′i | if oi ∈ [min(p′i, p
′′
i), max(p′i, p

′
i)],

0 otherwise.

Note that the sampling distribution becomes a Dirac delta function when p′ =
p′′.

As before, the probability of sampling domain Ωi is given by the integral of
p across Ωi. So, for sub-domains Ωi as in Equation 3, we have

Pr(Ωi|p′, p′′) =
∏

j

∫ xcij
+r

xcij
−r

p(oj |p′j , p′′j) doj (9)

where

∫ xcij
+r

xcij
−r

p(oj |p′j , p′′j) doj

=

max

(

0,
min(xcij

+r,max(p′

j ,p′′

j))−max(xcij
−r,min(p′

j ,p′′

j))

|p′

j
−p′′

j
|

)

if p′j 6= p′′j ,

δ(p′′j ∈ [xcij
− r, xcij

+ r]) otherwise.

By adding the contributions from all possible pairs of parents (with their selec-
tion probabilities) we can now compute the total probability that the offspring
will sample domain Ωi in a particular population P = (p1, · · · , pP):

Pr(Ωi|P) =
∑

p′∈P

∑

p′′∈P
Pr(Ωi|p′, p′′)φ(p′)φ(p′′) (10)

where φ(x) is the selection probability of parent x in population P . For fitness
proportionate selection φ(x) = f(x)/

∑

y∈P f(y).
Naturally, when P is the population associated to state s, Equation (10)

gives us the probability, Pr(Ωi|s), of generating an individual in domain i for a
population in state s. Because each individual in a population is generated by
an independent Bernoulli trial, we can then trivially compute the Markov chain
transition probability from any state s to any state s′ as

ms,s′ =
∏

i

Pr(Ωs′

i
|s).

6 Success probability and expected run time of

continuous optimisers

As mentioned above, when M is available, we can compute the probability dis-
tribution πt of a discretised continuous optimiser being in any particular state
at generation t, given its state probability distribution at the start, π0, from
πt = M tπ0. Since for each optimiser we know what π0 is, to compute the prob-
ability with which the element containing the global optimum is visited at a
particular generation t, one only needs to add up the appropriate components
of the πt vector. We will informally call this quantity the success probability.
For example, in an ES with fixed σ we have that the components of π0 are all

1/n and the success probability is simply given by the last component of πt

(assuming domains are ordered by fitness).
We can also estimate the expected run time of continuous optimisers by com-

puting the expected waiting time of the corresponding discrete Markov chain to
visit a particular target state or set of states J . Following [15, pages 168–170]
we have that the mean passage time for going from state i to the set of states J ,
given that it is currently outside the set is given by:

ηi,J =
∑

j∈J

mi,j +
∑

k 6∈J

mi,k(1 + ηk,J) (11)

where mi,j are the elements of Markov matrix for the system. Simple algebraic
manipulations of (11) lead to the following system of simultaneous equations:

ηi,J −
∑

k 6∈J

mi,kηk,J = 1 (12)

Once solved, we can then compute the expected waiting time to reach state
J , given a random initial state (described by the distribution p(.)) as

EWTJ =
∑

i6∈J

p(i)ηi,J . (13)

If the calculation is applied to an initial distribution where all states are equally
likely (the standard initialisation strategy in EAs) and with J being the element
containing the global optimum, we have

E[runtime] =

∑

i6∈J ηi,J

number of elements − 1
. (14)

Note that this calculation assumes that the algorithm has a way of identifying
when the element containing the global optimum is sampled and stops when this
happens. Often this is not the case. In this case, (14) should be interpreted as
the average first hitting time.

7 Experimental Results

We first apply the Markov chain models described in the previous sections to
the two one-dimensional (N = 1) fitness functions in Figure 1. These are ef-
fectively continuous versions of the onemax problem (Ramp) and the deceptive
trap function. The results of these tests are reported in Sections 7.1– 7.3. Then,
in Section 7.4, we study two-dimensional problems.

7.1 Evolutionary Strategies

In a series of experiments we applied the model of the (1+1)-ES with fixed-σ
and compared its behaviour with the behaviour of the real algorithm acting

 0

 1

 2

 3

 4

 5

 6

 7

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

fit
ne

ss
 f(

x)

x

Ramp
Discretised Ramp

Trap
Discretised Trap

Fig. 1. Ramp and Deceptive test functions and two corresponding piece-wise constant
discretisations.

on the Ramp and Deceptive continuous fitness functions. We chose the domain
Ω = [−0.5, 4.5). This was divided into n sub-domains Ωi = [xci

−r, xci
+r) with

equally spaced centroids xci
. To assess the behaviour of the algorithm in real runs

we performed 1,000 independent runs, where, in each run and each generation,
we recorded the sub-domain Ωi occupied by the parent. In particular we were
interested in comparing the proportion of runs in which the individual was in
the domain containing the global optimum Ωn vs. the frequency predicted by
the Markov chain over a number of generations.

Figure 2 shows the results of the comparison for different values of σ and for
the case of n = 10 (r = 0.25), i.e., where we discretise the evolutionary strategy
using only 10 states. As the figure indicates, as long as σ is bigger than the
cell width, 2r, the model predicts the success rate with considerable accuracy
throughout our runs (50 generations). When σ is comparable to r, there are
errors of up to around 10% in the prediction. Similar accuracies were obtained
for the deceptive fitness function (see Figure 3). In all cases, despite its tiny size,
the chain was able to predict that Deceptive is harder than Ramp.

To illustrate how one can use our Markov model to study how the compu-
tational complexity of an algorithm varies as the parameter σ varies and as a
function of the fitness function we also computed (as described in Section 6) the
expected first hitting time for the global optimum for the Ramp and Deceptive
functions. In this case we used a model with n = 40 elements to ensure good
accuracy also at small values of σ. Figure 4 shows the results for Ramp. As one
can see too small values of σ slow down the march towards the optimum, while

Table 1. Comparison between the probability of sampling the optimum domain pre-
dicted by the Markov chain for a variable-σ ES and empirical data (averages over 1,000
independent runs) after 50 generations for different discretisation resolutions, n. (NB
the size of the optimum domain reduces as the resolution increases.)

Ramp Deceptive

Resolution (n) Model Runs Model Runs

5 0.973 1.000 0.328 0.378
10 0.998 1.000 0.376 0.388
20 0.998 1.000 0.374 0.381
40 0.988 0.985 0.344 0.349

too big values make the search excessively random (note, resampling and the
rejection of samples outside Ω make the search even slower than pure enumer-
ation which on average would require 20 trials to find the optimum). So, the
optimum σ for this function appears to be between 0.5 and 1, as also suggested
by the success rates reported in Figure 2. As shown in Figure 5, the results for
for Deceptive are radically different. Firstly, for very low values of σ the problem
of finding the expected hitting time becomes unstable and so we cannot compute
reliable values. It is clear, however, that the search for the global optimum be-
comes easier as σ grows. This is to be expected. Most evolutionary algorithms do
worse than random search on deceptive problems. So, by increasing the search
variance, we turn our ES more and more into a random searcher, thereby im-
proving performance (although resampling and the rejection of samples outside
Ω prevent performance to ever reaching the pure enumeration limit of 20).

We then considered the (1+1)-ES with variable σ and studied the propor-
tion of runs in which the individual occupied the domain containing the global
optimum Ωn. In our tests we allowed both the discretise algorithm and real one
to use a range of 21 different σ’s in the range {σ0 · c−Z , σ0 · c−Z+1, · · · , σ0 · cZ}
with σ0 = 1, Z = 10 and c = 1.1. Table 1 shows how the accuracy of the model
varies as a function of the number of domains (n). Only the smallest chain, where
n = 5 and σ can take 21 values (i.e., the Markov chain has 105 states), deviates
significantly from the success probability5 observed in real runs. Figure 6 shows
how accurate the predictions of the model can be throughout a run. Note that as
one increases the grid resolution, the size of the element containing the optimum,
|Ωn|, decreases. So, it becomes harder and harder to hit such a region (for both
the model and the algorithm). This is the reason why in Table 1 the figures for
n = 20 are bigger than for n = 40.

7.2 Bare-bones PSO

In the experiments with the bare bones PSO we performed 5,000 runs for each
setting. Runs lasted 100 generations. In this case we wanted to compare not just
the success probability, but the whole state distribution at the end of the runs.

5 More precisely, the probability of sampling Ωn.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

su
cc

es
s

pr
ob

ab
ili

ty

generations

Onemax, n=10

Markov chain, sigma=4.0
Real runs, sigma=4.0

Markov chain, sigma=2.0
Real runs, sigma=2.0

Markov chain, sigma=1.0
Real runs, sigma=1.0

Markov chain, sigma=0.5
Real runs, sigma=0.5

Markov chain, sigma=0.25
Real runs, sigma=0.25

Fig. 2. (1 + 1)-ES with fixed σ: comparison between the success probability predicted
by the chain and that recorded in real runs for the Ramp function discretised with
n = 10 plateaus and for different values of σ.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50

su
cc

es
s

pr
ob

ab
ili

ty

generations

Deceptive, n=10

Markov chain, sigma=4.0
Real runs, sigma=4.0

Markov chain, sigma=2.0
Real runs, sigma=2.0

Markov chain, sigma=1.0
Real runs, sigma=1.0

Markov chain, sigma=0.5
Real runs, sigma=0.5

Markov chain, sigma=0.25
Real runs, sigma=0.25

Fig. 3. (1 + 1)-ES with fixed σ: comparison between the success probability predicted
by the chain and that recorded in real runs for the Deceptive function discretised with
n = 10 plateaus and for different values of σ.

 10

 100

 1000

 0 1 2 3 4 5 6

ex
pe

ct
ed

 ru
nt

im
e

sigma

Fig. 4. (1 + 1)-ES with fixed σ: expected first hitting time for the domain containing
the global optimum for the Ramp function discretised with n = 40 plateaus.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

ex
pe

ct
ed

 ru
nt

im
e

sigma

Fig. 5. (1 + 1)-ES with fixed σ: expected first hitting time for the domain containing
the global optimum for the Deceptive function discretised with n = 40 plateaus.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

su
cc

es
s

pr
ob

ab
ili

ty

generations

n=40, variable sigma

Onemax Markov chain
Onemax Real runs

Deceptive Markov chain
Deceptive Real runs

Fig. 6. Comparison between the probability of sampling the optimum domain predicted
by the Markov chain for a variable-σ (1+1)-ES and empirical data (averages over 1,000
independent runs) on Ramp and Deceptive. Grid with n = 40 elements.

Figures 7–12 compare the distributions obtained in real runs with those pre-
dicted by the chain for Ramp and Deceptive and for population sizes P = 2,
P = 3 and P = 4 in the case where the domain is divided into just n = 5 sub-
domains. Because the number of states grows very quickly with the resolution,
n, and the population size, P , and only very few states have non-zero probabili-
ties, it is very hard to obtain a meaningful plot of the full state distribution. So
we plot only the 20 states with the largest probabilities. Despite the low resolu-
tion used, we obtain an extremely good match between the distributions for all
population sizes tested. Also, the success probabilities (the rightmost point in
the plots for Ramp, and the one just before the last for Deceptive) match very
closely.

Naturally, as with the ES models, increasing the resolution n (see Figure 7)
improves fidelity and provides more accurate information on the distribution of
the population.

7.3 Real-valued GA

We performed 5,000 real-valued GA runs for each parameter setting. Runs lasted
100 generations. As with the PSO, we focused on the state distribution at the
end of the runs.

Figures 13–18 compare the distributions obtained in real runs with those
predicted by the chain for the case where the domain is divided into just n = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain, n=5
Real runs, n=5

Markov chain, n=10
Real runs, n=10

Markov chain, n=20
Real runs, n=20

Fig. 7. Comparison between predicted and observed state distributions at generation
100 for a BB-PSO (population size P = 2) applied to the Ramp function and for grid
resolutions n = 5, n = 10 and n = 20.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain
Real runs

Fig. 8. Comparison between predicted and observed state distributions at generation
100 for a BB-PSO (population size P = 2) applied to the Deceptive function and for a
grid resolutions n = 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain
Real runs

Fig. 9. As in Figure 7 but for P = 3 and n = 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain
Real runs

Fig. 10. As in Figure 8 but for P = 3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain
Real runs

Fig. 11. As in Figure 7 but for P = 4 and n = 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain
Real runs

Fig. 12. As in Figure 8 but for P = 4.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain, n=5
Real runs, n=5

Markov chain, n=10
Real runs, n=10

Markov chain, n=20
Real runs, n=20

Fig. 13. Comparison between predicted and observed state distributions at generation
100 for a GA (population size P = 2) applied to the Ramp function and for grid
resolutions n = 5, n = 10 and n = 20.

sub-domains and for population sizes P = 2, P = 3 and P = 4. Again, the figures
plot the 20 states with the largest probabilities. Despite the low resolution used,
we obtain an extremely good match between the distributions for all population
sizes tested and the success probabilities match very closely.

Again, increasing the resolution n (see Figure 13) provides more accurate
information on the distribution of the population.

7.4 Two-dimensional Problems: Sphere and Rastrigin

Very accurate results can also be obtained for higher dimensional and realistic
test functions. Figure 19, for example, compares the success probability esti-
mated by the chain and the actual success rate in 100,000 independent runs for
the variable-σ (1 + 1)-ES used in Section 7.1 on a 2–D sphere function over the
interval [−5, 5)2 discretise with a 21 × 21 = 441 element grid. Since we allowed
21 different σ’s, the total number of states in the Markov chain was 9261. This
might appear large, however the transition matrix is very sparse and the chain
can be computed and iterated in minutes on an ordinary personal computer.

Results of a similar quality were obtained when we applied the approach to
a 2–D Rastrigin function over the interval [−5, 5)2. Because of the complexity
of this function (it presents 100 optima in the interval chosen), we used a more
sophisticated variable meshing technique. The discretisation proceeded at the
21 × 21 resolution until an element with high fitness was found. When this

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain
Real runs

Fig. 14. Comparison between predicted and observed state distributions at generation
100 for a GA (population size P = 2) applied to the Deceptive function and for a grid
resolutions n = 5.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain
Real runs

Fig. 15. As in Figure 13 but for P = 3 and n = 5.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain
Real runs

Fig. 16. As in Figure 14 but for P = 3.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain
Real runs

Fig. 17. As in Figure 13 but for P = 4 and n = 5.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

state

Markov chain
Real runs

Fig. 18. As in Figure 14 but for P = 4.

happened the element was replaced by a set of smaller ones, effectively locally
increasing the resolution to that of a 61×61 grid. This gave a finite element grid
of 1329 elements instead of the 441 used for the sphere function. Consequently
the total number of states was about three times higher, namely 27909. As shown
in Figure 20, chain and experiments are in excellent agreement. Note that the
element containing the optimum is 9 times smaller that for the sphere function.
So, to obtain reliable statistics we performed 1,000,000 runs.

8 Conclusions

We have introduced a finite element method to construct discrete Markov chain
models for continuous optimisers and we have tested it on two types of evolution-
ary strategies, on the “bare bones” particle swarm optimiser and on a genetic
algorithm with continuous gene values. Whilst the models are approximate, they
can be made as accurate as desired by reducing the size of the sub-domains used
to quantise the system.

Being Markov chains, the models allow one to compute everything that one
needs to estimate about the distribution of states of a search algorithm over any
number of generations and for any fitness function. This is a complete charac-
terisation of the behaviour of the search algorithm. For example, in this single
framework, in addition to the success probability and the expected runtime, one
could calculate the evolution of mean fitness, the population diversity and the
size of basins of attraction. We can also compare the behaviour of algorithms by

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

su
cc

es
s

pr
ob

ab
ili

ty

generations

Markov chain
Real runs

Fig. 19. ES with variable σ: comparison between predicted and observed success prob-
abilities for a 2–D sphere function. Observations are means of 100,000 runs.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 20 40 60 80 100

su
cc

es
s

pr
ob

ab
ili

ty

generations

Markov chain
Real runs

Fig. 20. ES with variable σ: comparison between predicted and observed success prob-
abilities for a 2–D Rastrigin function. Observations are means of 1,000,000 runs.

comparing their Markov chains for different problems and compare how differ-
ent fitness functions influence the behaviour of an algorithm by comparing the
corresponding chains.

This is remarkable, but there is of course a price to pay. The price is that,
unsurprisingly, like most other models of evolutionary algorithms, the model
scales exponentially with the population size, or more generally the size of the
memory used by a search algorithm.

In future research we intend to present a deeper analysis and comparison of
the Markov chains obtained for different algorithms. We will look at the limiting
behaviour of system in the infinite time limit by applying traditional Markov
chain analysis techniques. We will also study our models mathematically in the
limit of the discretisation resolution going to zero. Finally we want to apply the
method to a broader variety of search algorithms, including simulated annealing,
traditional particle swarms with velocities, (µ+λ)-ESs, and differential evolution.

The method also opens the way to using the mathematical power of Markov
chains, specifically existing results on their limiting distribution and rates of con-
vergence, for a far wider range of practical evolutionary algorithms and realistic
fitness functions, than has previously been the case.

Acknowledgements

The authors would like to acknowledge support by EPSRC XPS project
(GR/T11234/01) and Leverhulme Trust (F/00213/J).

References

1. I. Babuska. The Finite Element Method for Infinite Domains. I. Mathematics of
Computation, 26(117):1–11, 1972.

2. T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, New
York, 1996.

3. K. J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall,
Englewood Cliffs, New Jersey, 1982.

4. M. Clerc. Stagnation analysis in particle swarm optimisation or what happens
when nothing happens. Technical Report Technical Report CSM-460, Department
of Computer Science, University of Essex, August 2006. Edited by Riccardo Poli.

5. M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and conver-
gence in a multidimensional complex space. IEEE Transaction on Evolutionary
Computation, 6(1):58–73, February 2002.

6. D. Givoli. Numerical methods for problems in infinite domains. Elsevier New York,
1992.

7. C. Goldstein. The Finite Element Method with Nonuniform Mesh Sizes for Un-
bounded Domains. Mathematics of Computation, 36(154):387–404, 1981.

8. J. Kennedy. The behavior of particles. In Evolutionary Programming VII: Pro-
ceedings of the Seventh Annual Conference on evolutionary programming, pages
581–589, San Diego, CA, 1998.

9. J. Kennedy. Bare bones particle swarms. In Proceedings of the IEEE Swarm
Intelligence Symposium 2003 (SIS 2003), pages 80–87, Indianapolis, Indiana, 2003.

10. J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan Kaufmann,
San Francisco, 2001.

11. R. A. Krohling. Gaussian particle swarm with jumps. In D. Corne, Z. Michalewicz,
M. Dorigo, G. Eiben, D. Fogel, C. Fonseca, G. Greenwood, T. K. Chen, G. Raidl,
A. Zalzala, S. Lucas, B. Paechter, J. Willies, J. J. M. Guervos, E. Eberbach,
B. McKay, A. Channon, A. Tiwari, L. G. Volkert, D. Ashlock, and M. Schoenauer,
editors, Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
volume 2, pages 1226–1231, Edinburgh, UK, 2-5 September 2005. IEEE Press.

12. T. Nomura and K. Shimohara. An analysis of two-parent recombinations for
real-valued chromosomes in an infinite population. Evolutionary Computation,
9(3):283–308, 2001.

13. E. Ozcan and C. K. Mohan. Particle swarm optimization: surfing the waves. In
Proceedings of the IEEE Congress on evolutionary computation (CEC 1999), Wash-
ington DC, 1999.

14. G. Rudolph. Convergence of evolutionary algorithms in general search spaces. In
International Conference on Evolutionary Computation, pages 50–54, 1996.

15. W. M. Spears. The Role of Mutation and Recombination in Evolutionary Algo-
rithms. PhD thesis, George Mason University, Fairfax, Virginia, USA, 1998.

16. R. Storn. Designing digital filters with differential evolution. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, Advanced Top-
ics in Computer Science, chapter 7, pages 109–125. McGraw-Hill, Maidenhead,
Berkshire, England, 1999.

17. L. Thompson and P. Pinsky. Space-time finite element method for structural acous-
tics in infinite domains. Part 1: formulation, stability and convergence. Computer
Methods in Applied Mechanics and Engineering, 132(3):195–227, 1996.

18. I. C. Trelea. The particle swarm optimization algorithm: convergence analysis and
parameter selection. Information Processing Letters, 85(6):317–325, 2003.

19. F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis, Depart-
ment of Computer Science, University of Pretoria, Pretoria, South Africa, Novem-
ber 2001.

