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Abstract

Inspired by Richard Lenski’s Long-Term Evolution Experi-
ment, we use the quantised chaotic Mackey-Glass time se-
ries as a prolonged learning task for artificial intelligence in
the form of steady state linear genetic programming using
GPengine to reach up to 100 000 generations. Using two
point crossover and point mutation we evolve programs of
up to 4 million instructions. Typically finding hundreds of
fitness improvements in the later stages of the runs.

Keywords: Autonomous open-ended learning in machines,
LTEE, Voas PIE, information theory, failed disruption propa-
gation, catalyst computing, skin depth, thin skinned software

Introduction
Richard Lenski’s Long-Term Evolution Experiment Lenski
et al. (2015) has shown, even in stable environments, bacte-
ria can continue to evolve, even after 80 000 generations. (In
contrast Homo Sapiens is some 9300 generations old.) Pre-
viously we have asked the question what happens if we allow
artificial evolution, specifically genetic programming (GP)
(Koza, 1992; Poli et al., 2008), to evolve for tens of thou-
sands, even hundreds of thousands of generations Langdon
and Banzhaf (2022). Whilst we found adaptation contin-
ued, in purely hierarchical tree GP using only crossover,
we found the rate of innovation fell inversely in proportion
to program size due to failed disruption propagation Petke
et al. (2021); Langdon and Clark (2024, 2025) promoting
population convergence Langdon (2022a). Information the-
ory shows failed disruption propagation is inherent in digital
computing and in deep programs can quickly lead to almost
all changes (good or bad) being invisible, and so evolution
simply drifting and learning stalling.

Instead we have tried to promote the idea that, to avoid
failed disruption propagation stifling innovation, for open-
ended learning we need to evolve thin walled software with a
high surface area (such as inspired by human lungs Langdon
(2022b)). We wish to ensure that semantic disruption in the
bulk of the code (where most learning will occur) has only a
short distance to travel to the surrounding environment and
so is likely to be visible and so beneficial changes can be
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Figure 1: Improvement of best fitness in ten runs of discrete
Mackey-Glass chaotic sequence prediction with population
of 500. 8 runs cuts short by scheduled reboots. Number of
fitness improvements given at the end of each run’s trace.

seen and rewarded Langdon and Hulme (2024). Like chem-
ical reactions occurring on a catalyst’s surface, rather than a
membrane or skin separating computing regions, computing
occurs at the surface.

Our intention is investigate other evolving architectures.
We start with linear genetic programming Banzhaf et al.
(1998); Brameier and Banzhaf (2007) (Figure 1) but will in
future investigate evolution of arrays or networks of such
programs. We also swap from continuous (float) sym-
bolic regression to predicting discrete (integer) time series,
deliberately choosing a chaotic series, as it should prove
hard enough to continually challenge learning. Indeed the
Mackey-Glass series (Figure 2) can be extended should the
predictor approach solving any finite part of it.

We do not want to impose arbitrary limits but it must
be admitted that without size control we expect bloat Koza
(1992); Tackett (1994); Langdon and Poli (1997); Altenberg
(1994); Angeline (1994); Poli and McPhee (2013). There-
fore we need a GP system not only able to run for perhaps
a million generations but also able to cope with programs of
well in excess of a million nodes.

https://imol2025.github.io/
http://www.cs.ucl.ac.uk/staff/W.Langdon/
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Figure 2: Discrete Mackey-Glass chaotic time series

Table 1: Mackey-Glass prediction with Linear GP
Terminal set: Unsigned 8 bit integers. Variables R0, R1, R2,

R3, R4, R5, R6, R7. Constants 0 to 127.
Function set: +−× DIV
Fitness cases:1201 Mackey-Glass examples. Given 8 prior

values (-1, -2, -4, ... -128 before) predict next y
Selection: Tournament(2), fit =

∑1201
i=0 |GP(~xi)− yi|2

Population: 500, panmictic, steady state.
Parameters: 100 000 generations. Random initial popula-

tion (500) size between 1 and 14 instructions.
90% two point 2 child crossover, 40% chance
both XO children subjected to random point
mutation 4 times. 10% reproduction.

DIV is protected division (y!=0)? x/y : 0

Experiments

Figure 1 shows typically even late into the run, linear GP
continues to find ways to innovate. Also, not only do the
programs increase in size, but so too does the number of
instructions actually executed. We follow Peter Nordin’s in-
tron removal algorithm, i.e. remove instructions which do
not impact the program’s output R0. The fraction of remain-
ing code is highly variable (1/3.3–1/700, median 1/14).

We anticipated power law Langdon (2000) or even expo-
nential Nordin et al. (1995) growth in program size. How-
ever only one run of ten shows almost continual rapid in-
crease in program length. The others show slower growth,
sometimes followed by a rapid increase phase. Concentrat-
ing upon the two runs which completed 100 000 genera-
tions, Figure 3 shows, although innovation continues, the
rate of fitness improvement appears to fall more-or-less lin-
early with increase in program size.

Even with relatively weak selection pressure Goldberg
(1989) (steady state Syswerda (1990) populations with bi-
nary tournaments Blickle (1996); Langdon (1998)), Figure 3
shows the populations convergence in two senses, many in-
dividuals have the best fitness and, even stronger, many in-
dividuals return identical values across all the training cases.
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Figure 3: Rate of improvement after generation 1000 in two
runs which completed 100 000 generations. To reduce noise,
each +× point is average of ten improvements.
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Figure 4: Mackey-Glass linear GP population conver-
gence. Top: number of programs with the best fitness. Bot-
tom: fraction of population which calculate identical an-
swers across 1201 test cases.

Conclusions

We have shown that prolonged evolutionary learning is in-
deed possible with a simple linear genetic programming sys-
tem. Our intention is to continue to enhance GPengine and
use it as a framework to support analyse of open-ended co-
evolution of multiple data sharing learning programs.

Based on previous experience Langdon (2020, 2022c), we
are confident that use of parallelisation e.g. multi-threading
and AVX vector instructions, will greatly increase perfor-
mance, allowing continual learning theory and experimenta-
tion on relatively modest hardware.
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Appendix
GPengine

GPengine is based on code provided by Peter Nordin.
In Langdon and Nordin (2001) we evolved functions with
four outputs while in Langdon and Banzhaf (2005) this
was reduced to one for the Mackey-Glass prediction prob-
lem. GPengine is available via https://github.com/
wblangdon/GPengine.

Mackey-Glass
We used the IEEE benchmark Mackey-Glass chaotic time
series http://www.cs.ucl.ac.uk/staff/W.
Langdon/ftp/gp-code/mackey_glass.tar.gz
τ = 17, 1201 data points, sampled every 0.1, see Figure 2.
Mackey-Glass is a continuous problem. The benchmark
converts it to discrete time and digitises the continuous
data to give byte sized integers (by multiplying by 128
and rounding to the nearest integer) Langdon and Banzhaf
(2005).
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