Debugging CUDA

W. B. Langdon

CREST lab,
Department of Computer Science

GECCO 2011 Companion,

8.7.2011 pages 415-422

M
[
— P‘

I

5
-



Introduction

 Some ideas on debugging GPGPU code
e 15t of two parts. 2" part on performance
 Code level debug aids, rather than tools
e Testing

 Example errors

e Lessons

W. B. Langdon, UCL



Defensive Programming

 Hard to debug kernel which fails because
get no feed back.

* Write description of all kernel parameters
before each is started to a log file.

printf(
grid_size, block_size, shared_size,
height ,width,len,
len®*sizeof (int),
len*width#sizeof (unsigned int),
len®*sizeof (int)):

printf( . /foutputs
len*width#sizeof (unsigned int),
len*width#sizeof (unsigned int),
3#sizeof (int)):

kernel<<{<{grid_size, block_size, shared_size>>>
(height ,width,len.d_in.d_a.d_y.d_outl.d_out?,d_status):

cutilCheckMsg( ):



CIREST
-—lq_\_‘_h‘l‘ -'h.._\_\_\‘\ ._‘-‘1"*-._

Defensive Programming - Loops

* In most kernels there are no loops or only
one

« Trap all potential infinite loops inside kernel

int loop = 0; /f/prevent looping forever

do {
if(found) break:
if(empty) break;
ffnext

} while(loop++ < Nvalue):

W. B. Langdon, UCL 4



Kernel Launch Failure

« Always check kernel status immediately with
cuti | CheckMsg( “ker nel nane
execution failed.\n");

— This (and your log) will help you pinpoint which
kernel failed.

— Sometimes the cut i | error message can help

e cuda- nentheck --conti nue can
sometimes locate array bound errors inside
your kernel. Too slow for normal use.

W. B. Langdon, UCL 5



First Kernel

« Write a kernel which does nothing except check:
— Does input reach the kernel?
— Does output leave the kernel?
— Do threads put data in correct place?
— Is output correct?

static __global__ void kernel(

const int LEN,

int d_10_out[10001] //check kernel creates correct output
) {

const int tid = blockDim.x # blockIdx.x + threadldx.x:

const int threadN = blockDim.x #* gridDim.x;

for(unsigned int t = tid; t < LEN; t += threadi)d

d_1D_out[t] = threadldx.x:
¥

¥



CIREST

 Debugging your First Kernel

e Did your first kernel work?

e Test your debugging system by adding an
error.

* Did the kernel fall in the way you expected?

e Did your error trapping code catch the error
and report It?

 Did your revision control system allow you to
recover your working version reliably,
correctly, with a minimum of manual input?

W. B. Langdon, UCL 7



Debug

 More examples of debug code In paper.
o Saving GPU buffers
e Testing...

W. B. Langdon, UCL



Testing

 New code is wrong
 Modified code is wrong
e Testing Is second best way of finding errors

e Testing Evolutionary Algorithms

o Comparison with known answers
 Regression Testing

e Source code version management

W. B. Langdon, UCL



Testing GAs

« Evolutionary Algorithms can evolve high
scoring “solutions”.

e “Solution” can be a bug In fithess function.

Eg robotics simulations.
 EA can work around bug in itself

Do not assume your system is working
because It evolves good looking answers

W. B. Langdon, UCL

10



CIREST
-—lq_\_‘_h‘l‘ -'h.._\_\_\‘\ ._‘-‘1"*-._

Comparison with Known Answers

e Are there benchmarks with correct answers?
 Is there a serial version (is it bug free)?

 Can you easlily create a serial version?
— Need not be efficient, just correct

W. B. Langdon, UCL 11



CIREST
-—lq_\_‘_h‘l‘ -'h.._\_\_\‘\ ._‘-‘1"*-._

Comparison with Known Answers

« Easy to overlook differences and assume
they are small and unimportant.

* Insist your GPU produces identical answers.
o Carefully control use of random seeds

« With floating point GPU will produce different

ansSwers.
— Decide in advance size of acceptable difference

— Do you want -0, NaN etc to be “different”?

W. B. Langdon, UCL 12



CIREST

Regression Testing

 Modified code Is wrong

« Comparing your “Improved” code’s output
with previous outputs can help locate errors.

W. B. Langdon, UCL 13



Revision Control

 Modified code Is wrong

 The best way of locating faults iIs comparing
your “improved” code with the previous
version.

e Your revision control system should make it
easy to compare versions of your code.

 Ensure you have an automated way of
recording which version of your code
produced which outputs. This can help
greatly in regression testing.

14



GPU Bugs

 Too many examples!!!
— For example, see proceedings (pages 415-423)

| have chosen three related to GPU

W. B. Langdon, UCL 15



CIREST

- GPU Bugs — Missing threads

__device__ void save_datal{const unsigned int pana)
¥
if(data) {
. lookup data ...
iflmissing) save_dataldata,...):
¥

 From the calling code, we can see
save data() is only called by threads for
which data is both non-zero and missing.

e This Is not obvious when looking at
save data()’'s code. Where | assumed all

threads in a warp were calling it.

{

16



volitile

 volatile turns off nvcc optimisation whereby It
uses per thread registers.

e Using shared memory to communicate
between threads

 Make every pointer to shared memory volatile

__device__ void insert{const unsigned int mask.
const int Nmask., wvolatile unsigned int#® shared_mask) {

W. B. Langdon, UCL 17



CIREST

~ C not fully defined, int >>24

e C right shift operation can either perform an
arithmetic or a logical shift.

o To fix this | declared the variable
unsi gned | nt rather than i nt

int x = 0x80000000;
unsigned int y = 0x80000000;
x 2> 24; flogives OxPEFfff80 (-127)
y »> 24: //oives 0x00000080 ( 123)

W. B. Langdon, UCL 18



Discussion

Debug driven from host
— printf, GPU debug direct to monitor, GPU emulator gone

CUDA
— CUDA works

» Mostly (nvcc etc pretty stable) visual profiler poor
— C, I guess you can have bugs in other languages
— openCL
Linux
— Eclipse?
— Microsoft visual studio?
Commercial Tools?

W. B. Langdon, UCL 19



Conclusions

YOU ARE THE BOOTLE NECK

Writing working high performance GPGPU
code Is hard.

Four CIGPU events BUT creating
evolutionary algorithms to effectively use
GPU is still hard

Establish libraries of debugged code?

Can problem be expressed as matrix
manipulation? Use cublas library?

W. B. Langdon, UCL 20



END

http://www.epsrc.ac.uk/ EPSRC

W. B. Langdon, UCL 21



A Field Guide To
Genetic Programming
http://www.gp-field-guide.org.uk/

A
Field
Guide
to

|

enetlic

Programming

Free
PDF




The Genetic Programming Bibliography

The largest, most complete, collection of GP papers.
http://www.cs.bham.ac.uk/~wbl/biblio/

With 7554 references, and 5,895 online publications, the GP Bibliography is a
vital resource to the computer science, artificial intelligence, machine learning,
and evolutionary computing communities.

RSS Support available through the
Collection of CS Bibliographies. EHEES

'@P A web form for adding your entries. Wiki to .
.. o A update homepages. Co-authorship e
community. Downloads vl ‘

A personalised list of every author's GP
publications.

Search the GP Bibliography at -
http://linwww.ira.uka.de/bibliography/Ai/genetic.programming.html



