
Debugging CUDA

W. B. Langdon
CREST lab,

Department of Computer Science

8.7.2011

GECCO 2011 Companion,
pages 415-422

W. B. Langdon, UCL 2

Introduction
• Some ideas on debugging GPGPU code
• 1st of two parts. 2nd part on performance
• Code level debug aids, rather than tools
• Testing
• Example errors
• Lessons

Defensive Programming
• Hard to debug kernel which fails because

get no feed back.
• Write description of all kernel parameters

before each is started to a log file.

W. B. Langdon, UCL 4

Defensive Programming - Loops
• In most kernels there are no loops or only

one
• Trap all potential infinite loops inside kernel

W. B. Langdon, UCL 5

Kernel Launch Failure
• Always check kernel status immediately with
cutilCheckMsg(“kernel_name
execution failed.\n”);
– This (and your log) will help you pinpoint which

kernel failed.
– Sometimes the cutil error message can help

• cuda-memcheck --continue can
sometimes locate array bound errors inside
your kernel. Too slow for normal use.

6

First Kernel
• Write a kernel which does nothing except check:

– Does input reach the kernel?
– Does output leave the kernel?
– Do threads put data in correct place?
– Is output correct?

W. B. Langdon, UCL 7

Debugging your First Kernel
• Did your first kernel work?
• Test your debugging system by adding an

error.
• Did the kernel fail in the way you expected?
• Did your error trapping code catch the error

and report it?
• Did your revision control system allow you to

recover your working version reliably,
correctly, with a minimum of manual input?

W. B. Langdon, UCL 8

Debug

• More examples of debug code in paper.
• Saving GPU buffers
• Testing…

W. B. Langdon, UCL 9

Testing
• New code is wrong
• Modified code is wrong
• Testing is second best way of finding errors

• Testing Evolutionary Algorithms
• Comparison with known answers
• Regression Testing
• Source code version management

W. B. Langdon, UCL 10

Testing GAs
• Evolutionary Algorithms can evolve high

scoring “solutions”.
• “Solution” can be a bug in fitness function.

Eg robotics simulations.
• EA can work around bug in itself
• Do not assume your system is working

because it evolves good looking answers

W. B. Langdon, UCL 11

Comparison with Known Answers

• Are there benchmarks with correct answers?
• Is there a serial version (is it bug free)?
• Can you easily create a serial version?

– Need not be efficient, just correct

W. B. Langdon, UCL 12

Comparison with Known Answers

• Easy to overlook differences and assume
they are small and unimportant.

• Insist your GPU produces identical answers.
• Carefully control use of random seeds
• With floating point GPU will produce different

answers.
– Decide in advance size of acceptable difference
– Do you want -0, NaN etc to be “different”?

W. B. Langdon, UCL 13

Regression Testing
• Modified code is wrong
• Comparing your “improved” code’s output

with previous outputs can help locate errors.

14

Revision Control
• Modified code is wrong
• The best way of locating faults is comparing

your “improved” code with the previous
version.

• Your revision control system should make it
easy to compare versions of your code.

• Ensure you have an automated way of
recording which version of your code
produced which outputs. This can help
greatly in regression testing.

W. B. Langdon, UCL 15

GPU Bugs
• Too many examples!!!

– For example, see proceedings (pages 415-423)

• I have chosen three related to GPU

16

GPU Bugs – Missing threads

• From the calling code, we can see
save_data() is only called by threads for
which data is both non-zero and missing.

• This is not obvious when looking at
save_data()’s code. Where I assumed all
threads in a warp were calling it.

W. B. Langdon, UCL 17

volitile
• volatile turns off nvcc optimisation whereby it

uses per thread registers.
• Using shared memory to communicate

between threads
• Make every pointer to shared memory volatile

W. B. Langdon, UCL 18

C not fully defined, int >>24
• C right shift operation can either perform an

arithmetic or a logical shift.
• To fix this I declared the variable
unsigned int rather than int

W. B. Langdon, UCL 19

Discussion
• Debug driven from host

– printf, GPU debug direct to monitor, GPU emulator gone

• CUDA
– CUDA works

• Mostly (nvcc etc pretty stable) visual profiler poor

– C, I guess you can have bugs in other languages
– openCL

• Linux
– Eclipse?
– Microsoft visual studio?

• Commercial Tools?

W. B. Langdon, UCL 20

Conclusions
• YOU ARE THE BOOTLE NECK
• Writing working high performance GPGPU

code is hard.
• Four CIGPU events BUT creating

evolutionary algorithms to effectively use
GPU is still hard

• Establish libraries of debugged code?
• Can problem be expressed as matrix

manipulation? Use cublas library?

W. B. Langdon, UCL 21

END

http://www.epsrc.ac.uk/

A Field Guide To
Genetic Programming

http://www.gp-field-guide.org.uk/

Free
PDF

The Genetic Programming Bibliography

The largest, most complete, collection of GP papers.
http://www.cs.bham.ac.uk/~wbl/biblio/

With 7554 references, and 5,895 online publications, the GP Bibliography is a
vital resource to the computer science, artificial intelligence, machine learning,
and evolutionary computing communities.

RSS Support available through the
Collection of CS Bibliographies.

A web form for adding your entries. Wiki to
update homepages. Co-authorship
community. Downloads

A personalised list of every author’s GP
publications.

Search the GP Bibliography at
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

