
 

 

 

  

Abstract—This paper is a report on the migration of the 

molecular docking application, “Autodock” to NVIDIA CUDA. 

Autodock is a Drug Discovery Tool that uses a Genetic 

Algorithm to find the optimal docking position of a ligand to a 

protein. Speedup of Autodock greatly benefits the drug 

discovery process. In this paper, we show how significant speed 

up of Autodock can be achieved using NVIDIA CUDA. This 

paper describes the strategy of porting the Genetic Algorithm to 

CUDA. Three different parallel design alternatives are 

discussed. The resultant implementation features ~50x speedup 

on the fitness function evaluation and 10x to 47x speedup on the 

core genetic algorithm. 

I. INTRODUCTION 

UTODOCK is a molecular docking application that is 

widely used in drug discovery. It is available as open 

source software under GPL. Autodock is developed and 

maintained by TSRI [1]. 

In this paper, we present a CUDA [2] enabled version of 

Autodock (version 4.2.1) that speeds up the core Genetic 

Algorithm by two orders of magnitude. We chose to 

parallelize Autodock at an architectural level than at a 

functional level. We explored 3 different approaches for 

efficient fitness calculation on GPU before choosing the best. 

Our implementation gives a speedup of ~50x in fitness 

evaluation for the typical usage. We also present a CGPU 

(CPU+GPU) memory management approach suitable for 

handling memory for large projects. 

Our speedup results are a huge leap compared to the open 

source project gpuAutodock [3]. gpuAutodock achieves 4% 

(1.04x) speedup for typical population sizes and a similar 

speedup for higher population sizes.  

Autodock Vina [4] is a new docking tool from TSRI that 

achieves two orders of magnitude speedup even on existing 

hardware. Our speedups are similar to Vina. However this is 

not an apple to apple comparison. Vina uses efficient local 

search that reduces the evaluations needed to arrive at the 

solution. As on today, Vina is distributed only in binary. 

Local search algorithms are usually iterative and adaptive 

and easily take up considerable amount of time in docking. 

Much of this time is spent in fitness evaluation. By providing 

efficient fitness evaluation on CUDA, we have  laid the 
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ground-work for implementing efficient local search on 

GPUs.  

This paper does not focus on Local Search. The hunt for a 

suitable local search method for GPU (Graphics Processing 

Unit) itself is a separate research work and deserves a 

separate paper. This paper only focusses on implementation 

of the Genetic Algorithm and the fitness function on CUDA. 

Towards the end of paper, we briefly discuss some strategies 

for efficient local search on the GPU. 

II. CUDA ARCHITECTURE 

CUDA stands for Compute Unified Device Architecture. 

It is a GPGPU [5] technology pioneered by NVIDIA 

Corporation. CUDA programs seamlessly run on a family of 

GPUs from NVIDIA. 

A. Physical View 

At the physical level, the NVIDIA GPU can be seen as a 

set of multi-processors (MP). Each MP has 8 SIMD cores. 

MPs execute hardware threads as dictated by the CUDA 

software. A bunch of 32 threads called a “warp” are always 

executed together by the MP. 

All MPs share a common global memory (GPU’s main 

graphics memory). Each MP has 16KB of high-speed shared 

memory placed under program control. These are unlike 

CPU caches which are program un-aware. All MPs have an 

8KB texture cache to accelerate texture fetches. The global 

memory offers a very high bandwidth. This bandwidth is 

manifold of CPU’s main memory bandwidth. 

Some of the commonly used math library functions are 

directly implemented on the hardware. For example sqrtf, 

sinf, cosf, reciprocal sqrtf etc. 

The hardware is capable of hiding latencies by 

overlapping computation from different threads with memory 

access. Scheduling a lot of threads also help to avoid “Read-

After-Write” dependencies in the execution pipeline 

resulting in superior performance. The concept is very 

similar to Hyper-threading but is done massively and 

efficiently by the CUDA hardware [6]. 

B. Logical View 

CUDA programming model allows programmers to 

launch software kernels to run on the GPU. The programmer 

can specify the number of thread blocks that need to be 

spawned by the hardware while launching the CUDA kernel. 

The GPU hardware takes care of spawning the thread blocks 

and executing the kernel. A thread block is a bunch of 

hardware threads tied to a shared memory region. The 

physical number of MPs in the underlying hardware has no 
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bearing on the number of thread blocks that can be launched. 

CUDA provides for synchronization and memory 

consistency primitives for all threads inside a thread block. 

However, the thread blocks themselves are completely 

independent of each other and cannot be synchronized. 

Recent versions of CUDA hardware support global atomics 

and global memory consistency primitives enabling thread 

blocks to communicate and synchronize with each other. 

Frequently used data can be stored in shared memory to 

accelerate computations. The CUDA programming model 

requires adjacent threads to access adjacent memory 

locations for the best memory bandwidth. This concept is 

called Memory Coalescing and it reduces the number of trips 

to memory. Applications requiring random access can 

benefit from textures. CUDA offers 1D, 2D and 3D read-

only textures optimized for spatial locality. Control 

statements like “if”, “for” and “while” can split warps 

causing loss of hardware cycles. 

III. AUTODOCK BACKGROUND 

Autodock uses a Lamarckian Genetic Algorithm to search 

for the optimal docking position of a ligand inside a protein. 

The ligand is also referred as small molecule. The protein is 

also referred as Macro Molecule or the Receptor. This paper 

will focus only on the core Genetic Algorithm (GA). The 

Lamarckian variant pertains to local search which is “not” a 

focus of this paper. 

A. Solution Space 

Autodock attempts to find the optimal docked position of 

the ligand inside a 3D grid box specified in the active site of 

the protein. The 3D grid box represents the solution space. 

This box is a continuous space and hence the total number of 

possible solutions is infinite. Each 3D point inside this grid 

box is a potential candidate where the ligand can be 

centered. Autodock uses discrete 3D energy points for fitness 

evaluation purposes and uses tri-linear interpolation to arrive 

at approximate energies. 

B. Genetic Code (chromosome) 

Genetic Algorithms usually identify the notion of an 

individual and its genetic code (Chromosome) with respect 

to the problem’s solution space. The genetic code must 

uniquely identify a candidate solution.  

Autodock treats a particular orientation of the ligand 

inside the protein as an “individual” in its GA. Hence 

Autodock’s genetic code uniquely identifies the orientation 

of a ligand.  

Autodock represents the chromosome as a vector of real 

numbers. Each element in the vector stands for a gene. A 

pictorial representation of the chromosome can be found in 

Figure 1. Following parameters are used as genes contained 

in an individual’s chromosome. 

• X,Y,Z-Translations of the center of ligand inside the 

3D grid box (3 genes) 

• Quaternion Information (4 genes – w, x, y, z) that 

specifies the overall 3D orientation of the ligand 

• Torsion angle information for each rotatable bond in 

the ligand (“Rotatable bonds” number of genes) 

 

 

 

 

 

 

 

 

 

Figure 1 - Autodock GA Chromosome Representation  

C. Genetic Operators 

Autodock performs all the genetic operators namely, 

Selection, Crossover and Mutation on the genetic code. 

D. Fitness Evaluation 

Fitness evaluation evaluates the total energy of a particular 

orientation of the ligand inside the protein. Lower is better. 

E. Typical GA parameters 

Here are some typical parameters used while running 

Autodock [7].  

• Population Size    –   150 

• Crossover Rate – 80% of individuals undergo 

Crossover on every generation 

• Mutation Rate  – 2% of the total genes in a 

population undergo mutation on every generation 

IV. AUTODOCK GA ON CUDA 

This section is broadly structured as follows 

• High Level Guidelines adopted for CUDA Migration 

• Fitness function on CUDA 

• Genetic Operators on CUDA 

• Results 

 

The results shared in this paper used the following 

configurations 

• AMD Athlon, 2.41GHz, 64 KB L1 I-Cache, 64 KB 

L1  D-Cache, 512KB L2 Cache, 2GB RAM 

• Tesla C1060, 240 cores @ 1.3GHz, 4GB Graphics 

RAM 

• The ind-hsg ligand protein pair that comes with 

Autodock tutorial was used for docking. The “ind” 

molecule has 12 rotatable bonds (torsions) and 

“hsg” has a flexible side chain as well. Together 

they represent a typical docking pair. 

• Proportional Selection 

• Uniform 2-point Crossover with a rate of 80% of 

individuals per generation 

Translation genes 

specifying the 

center of ligand 

inside the 3D grid 

Quaternion genes 

specifying the 3D 

orientation of the 

ligand 

Torsion Angle genes 

specifying the angles 

of ‘N’ rotatable 

bonds in the ligand 

Tx Ty Tz Qx Qy Qz Qw R1 Rn 
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• Mutation rate of 2% of total genes per generation 

A. High Level Guidelines adopted for CUDA Migration 

1) Floating Point Precision 

One of the earliest design choices that we made was to use 

single-precision arithmetic. This is harmless because GA 

depends on relative goodness among individuals’ energies 

and single precision may not affect the accuracy of GA path 

significantly. 

2) GA State Maintenance 

We decided to keep as much GA State in the GPU itself 

and perform the GA operators using GPU kernels. This 

decision is critical because this eliminates un-necessary 

memory copies back and forth GPU memory and host PC’s 

main memory. GA State includes the chromosomes of all 

individuals in the current population, Energy values of 

individuals, chromosomes of all individuals in new 

population and so on.  

3) Phenotypes 

The Genetic Algorithm used in Autodock does not 

differentiate between a genotype and a phenotype. Autodock 

merely duplicates the genotype to create the phenotype. 

Logically, the atomic coordinates of each participating atom 

is the phenotype resulting from a genotype. Although 

Autodock does generate the logical phenotype eventually, it 

does “not” represent the same as a “phenotype” in the 

software. Instead the software merely duplicates the 

genotype to generate the phenotype. In our implementation, 

we did away with this redundancy and maintained only one 

single copy. This helped in minimizing un-necessary 

memory copies. 

4) Random Numbers 

The random number generator used in Autodock 

maintains state information and is difficult to port to GPU. 

For testing purposes, we required the CPU and GPU 

implementations to generate the same stream of random 

numbers. Hence we retained the random number generation 

in the CPU itself. This has two advantages: 

• Enables one to one comparisons of CPU and GPU 

results. This is very important in validating the 

accuracy of GPU implementation. 

• Reduce the design, coding and validation effort of 

generating random numbers on GPU. 

5) CGPU Memory Manager 

The Autodock program involves a lot of memory buffers. 

Majority of them are one time copies needed only during 

initialization, for example, the energy map files. Some of 

others are dynamic and need to be transferred to and from 

GPU and host PC’s main memory. We came up with the idea 

of a CGPU memory manager, implemented as a C++ object 

which features the following: 

• Avoid GPU memory fragmentation by pooling 

related memory requests 

• Support Alignment for individual memory requests 

• Support for pinned memory 

• Copy related buffers between CPU and GPU in one 

shot, typically using operator overloading 

• Free related buffers in 1 shot 

The CGPU memory manager object could be constructed in 

one of the following ways 

• Specifying the location as CPU or GPU 

• Pairing with another CGPU memory manager object. 

The pair could be homogeneous or heterogeneous 

with respect to the location, the default being 

heterogeneous. A use case for homogeneous pair 

can be found in the Selection operator section 

below. 

• Specifying a vector of allocation requests (the 

location defaults to GPU unless otherwise 

specified) 

All of the construction interfaces offer an optional flag to 

signal a ‘pinned’ memory allocation. 

6) Root Structures 

Root Structures hold information and pointers to data used 

in the GA. Our implementation used two Root structures, 

namely CPURoot and GPURoot. The GA initialization 

module creates memory objects, allocates memory, copies 

data, retrieves the memory pointers and populates them in 

the CPURoot and GPURoot structures. Both the structures 

were made available globally to other modules of the GA. 

This helped us in the following. 

• To clearly demarcate CPU and GPU pointers 

• To create a hierarchy of pointers and data that gave 

structure to the code 

B. Fitness Function (Energy Evaluation) on CUDA 

Energy evaluation is the fitness function used by 

Autodock’s GA. For every generation, the energies of all the 

individuals are re-calculated. In practice, only the modified 

ones get re-calculated. With 80% crossover rate, majority of 

the population gets modified every generation, which is a 

sizeable number. Our strategy was to evaluate all the 

individuals in a population regardless of modifications. This 

strategy is also helped by the fact that the entire GA state 

resides inside the GPU.  

Energy of a particular individual is the sum of inter-

molecular energy (between atoms of ligand and receptor) 

and intra-molecular energy (amongst movable atoms in the 

ligand and flexible side-chain in the receptor). 

• Fitness evaluation starts by locating the atom 

coordinates of each atom in the ligand based on its 

genetic code.  (torsion() , qtransform() functions) 

• Once the coordinates of the atoms in the 3D box are 

known, the inter-molecular energies of each atom in 

the ligand are summed up. The inter-molecular 

energy values are pre-generated by Autogrid [8] for 

every atom type in the ligand and available as 

energy map files. Since the atomic coordinates are 

in continuous space, Autodock performs tri-linear 
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interpolation based on values in the energy map 

files and the atom type. (trilinterp() function) 

• Autodock runs through the non-bond list evaluating 

intra-molecular energies. (eintcal() function).  

1) Design Alternatives 

We explored 2 different approaches to evaluate the fitness 

function on CUDA. One was to dedicate one GPU thread to 

calculate the energy of one individual (PerThread). The 

other approach was to use one GPU Thread Block for 

calculating the energy of one individual (PerBlock). The 

final design was a variant of PerBlock approach and is 

explained in the next section. Here is a brief comparison of 

the two parallel approaches. 

 

Table 1 - Comparison of 2 approaches to Parallel 

breakdown of the Fitness function 

 PerThread Parallel 

Breakdown 

Approach 

PerBlock Parallel 

Breakdown Approach 

1  Parallelism exploited 

at inter-individual 

level. Parallelism is 

proportional to the 

population size. 

Parallelism exploited at 

intra-individual level. This 

is usually a function of the 

number of atoms 

participating in the docking 

(atoms in ligand + atoms 

in flexible side chain) 

2  Requires population 

size in thousands to 

saturate the GPU. 

A modest population in 

hundreds is enough to 

saturate the GPU 

3  Only common data to 

all individuals can be 

placed in shared 

memory. 

All data pertaining to a 

particular individual can be 

placed in shared memory. 

Common data can be 

accessed via textures. 

4  Applying Torsions is 

straight forward. Each 

thread applies the 

necessary torsions for 

the individual it 

controls. 

Since an atom’s 

coordinates could be 

dictated by more than one 

torsion entry, parallelism is 

restricted to the atoms 

affected by a single torsion. 

(which could be very less) 

5  Summing the energies 

is straight forward. 

Each thread sums up 

the energy values for 

the individual it 

controls. 

Summing the energies 

require a reduction [9] 

towards the end. 

 

We designed the following set of 5 kernels for both the 

approaches 

1. Atomic coordinate initialization 

2. Applying Torsion 

3. Applying qtransform 

4. Tri-linear Interpolation 

5. Internal energy calculation 

We used structure of arrays so that PerThread kernels 

accessed memory in a coalesced way.  

Figure 2 and Figure 3 show the breakdown of typical time 

taken for the 5 steps for the PerThread and PerBlock cases 

on the GPU. A population size of 5760 was used in 

PerThread case. A population size of 300 was used in 

PerBlock case. These numbers were chosen to saturate the 

GPU completely. Tri-linear interpolation and internal energy 

calculation dominate the computation in both cases. Both the 

steps are memory intensive and that explains why they take 

the most time.  The PerBlock implementation spends 

relatively more time in torsion. This can be attributed to the 

4
th

 point in Table 1. 

Figure 4 shows the performance results of the two 

approaches. PerBlock approach performs ~12x faster than 

the PerThread for the typical population size of 150. 

It is worth noting that CUDA hardware provides hardware 

support for 3D Textures and tri-linear interpolation. The tri-

linear interpolation function can be replaced by a single 

“tex3D” instruction on the GPU. However the GPU 

hardware performs the interpolation with reduced precision. 

Our implementation can be compiled with/without hardware 

interpolation. In any case, 3D textures accelerated tri-linear 

interpolation by a great amount due to the 3D spatial 

locality involved in interpolation. This feature was exploited 

in both PerThread and PerBlock kernels. We never enabled 

the hardware interpolation in any of the tests discussed in 

this paper because it caused the results to differ significantly. 

 

 

 
Figure 2 – Fitness function on GPU: Time breakdown for 

PerThread Approach  
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Figure 3 – Fitness function on GPU: Time breakdown for 

PerBlock Approach  

2) Final Design 

The final design is an improvement over the “PerBlock” 

approach. All the 5 PerBlock kernels write and/or read all 

the atomic coordinates pertaining to an individual. This 

overhead can be completely eliminated if one chooses to 

launch only one kernel and keep all the atomic coordinates 

cached in shared memory. We refer this implementation as 

“PerBlockCached”. This approach outperforms the PerBlock 

implementation consistently.  

However this approach limits the number of atoms that 

can be supported for docking. CUDA hardware provides 

16KB of shared memory per MP. Out of this roughly 14KB 

is used for storing 3D atomic coordinates. This can help 

store about a 1000 atoms. Autodock supports a maximum of 

2000 atoms. However for practical purposes 1000 is enough. 

With the advent of Fermi [10], CUDA applications can use 

48KB of shared memory that can easily accommodate 2000 

atoms. 

3) Results of Energy Evaluation (Fitness) 

Figure 4 shows the comparative results of the three 

different approaches. The PerBlockCached kernel 

outperforms the other two for both smaller and relatively 

larger population sizes. The PerBlockCached kernel runs 

~19x faster than PerThread and ~1.55x faster than the 

PerBlock kernel for the typical population size of 150. The 

PerThread kernel gives the best performance for very high 

population sizes. The PerBlockCached kernel outperforms 

the PerBlock kernel by a factor of ~1.2x to ~1.5x for the 

considered range of population sizes. 

Applying torsions takes significant amount of time in 

PerBlock and PerBlockCached versions. This is one reason 

why PerThread version performs much better for higher 

population sizes. Our final implementation dynamically 

selected the kernels according to the population size 

specified by the user. There is still scope for improving 

torsion operation in PerBlock variants. 

 

 
Figure 4 – Fitness function on GPU: Comparison of 3 

parallel breakdown approaches  

Figure 6 shows speedups achieved for various GA 

operators with respect to the CPU. The fitness operator in 

Figure 6 corresponds to the PerBlockCached variant. It 

yields a speedup of ~50x over CPU for the typical 

population size of 150. The “dip” in the speedup at the 

population size of 200 can be explained by the fact that 

CUDA hardware idles for certain population sizes (which is 

equal to the number of thread blocks). One can also see that 

the fitness speed up saturates at 60x for huge population 

sizes. 

C. Selection 

Selection process involves calculation of relative merit of 

each individual and selecting the eligible ones from the 

current population and copying them to the new population.  

Autodock supports multiple selection modes. Our GPU 

implementation supports only the “selection proportional” 

method as this is the default selection mode in Autodock. 

The selection process was implemented as a GPU kernel 

that copied marked individuals from old population to the 

new population. The CPU merely indicated which 

individuals need to be copied. Our implementation used 

GPU to calculate the population average and relative merit 

of each individual and this was overlapped with other 

selection related work like permuting the ordering array on 

the CPU.  

One can infer from Figure 6 that selection performs almost 

as good as CPU for lesser population sizes but slowly 

outperforms the CPU as the population size increases. The 

time complexity of Selection depends on the fitness of the 

population. That explains why the speedup graph for 

Selection is non-linear. 

Selection requires two population instances to exist inside 

the GPU. Having one population instance causes read-write 

parallel hazards as GPU threads copy individuals (read) from 

old population and update (write) the new population. This 

forms a use case for support for homogeneous pairs in 

CGPU memory manager. 
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D. Crossover 

Crossover process involves exchanging genetic code 

between two selected individuals at selected gene locations. 

Crossover was implemented as a GPU kernel. Our GPU 

implementation supports only the 2-point crossover mode 

which is the default mode used by Autodock. 

The GPU kernel exploited the pair-level parallelism. 

Autodock generates unique crossover pairs which is a 

necessary condition for running Crossover in parallel on 

GPU. One can infer from Figure 6 that Crossover operation 

on GPU linearly increases in speedup. This is expected 

because an increase in population size increases the number 

of Crossover operations and GPU gets loaded fully. 

We would also like to share that we identified a bug in the 

Crossover implementation of Autodock during this process 

[11]. 

E. Mutation 

Autodock implements the Mutation process by modifying 

random genes chosen from random individuals. The GPU 

implementation of the Mutation process exploits the per-

mutation parallelism. However, Autodock allows a gene to 

be mutated more than once. These repeated mutations cause 

a parallel hazard in exploiting per-mutation parallelism.  

This can be avoided in 2 ways. One approach would be to 

exploit per-gene parallelism instead of per-mutation 

parallelism. This approach will accommodate multiple 

mutations to the same gene. The other approach would be to 

avoid multiple-mutations. Our implementation chose the 

second one. 

The GPU implementation features a Mutation Manager 

that avoids more than 1 mutation to a gene. The manager re-

maps a colliding mutation to an un-mutated gene. For this 

reason, the GPU implementation results deviate from CPU 

implementation when mutations are enabled. 

1) Mutation Manager 

Mutation Manager simply re-maps colliding gene 

mutations. It uses a bit array to identify genes that are 

already mutated. An alternate approach would be to replace 

multiple mutations occurring on a same gene with a single 

mutation that causes the combined effect. This is quite 

possible if the mutation operator is associative. Non-

associative mutation operations still need to be managed with 

re-mappings. We have not investigated the associative 

properties of the mutation operator in Autodock. 

Figure 6 shows that mutation in GPU performs worse than 

the CPU. Experiments show that GPU mutation runs almost 

6x slower than the CPU when 1% of total genes in a 

population undergo mutation. The number decreases to 4x 

when 2% undergo mutation. The increase in parallelism 

works to GPU’s benefit in the 2% case. The slowness is 

mainly due to the overhead of Mutation Manager. Since 

mutation corresponds to a very minimal part of the GA, this 

does not affect the overall speedup. This can be inferred 

from Figure 7 

F. Population swapping 

When the new population is ready to go, our 

implementation merely swaps out the old and new pointers 

instead of copying data. This is in sharp contrast with 

Autodock that copies the new population to old population 

and destroys the newly created object. The current CPU 

implementation of Autodock can be easily sped up by 

employing an object reference swapping scheme instead of 

copying and destroying. 

G. Results 

1) Accuracy 

CPU and GPU Results were comparable for smaller 

number of generations. However, deviations were observed 

when the number of generations increased to thousands. This 

was traced to energy evaluation results. Difference in order 

of floating point calculations (the reductions) and the single 

precision nature of computation (Intel CPUs use 80-bits 

precision internally) causes GPU evaluated energy values to 

slightly differ from CPU. This causes a change in the 

Selection process that affects the course of the GA. We 

believe that this will not be an issue and that several runs of 

Autodock with random seeds would help in identifying good 

ligand-protein conformations. 

2) Speedups 

Figure 5 shows the net speedup of the GA with respect to 

the population size. The core GA used by Autodock got 

accelerated by 10x to 47x depending on the chosen 

population size. 

 

 
Figure 5 - Overall GA Speedup 

Figure 6 shows the speedup of various GA phases with 

respect to the population size. To make one to one 

comparisons, we changed the CPU implementation not to 

evaluate energies in selection, Crossover and mutation 

phases. But the energies were evaluated for the entire 

population after the GA phases ended (as opposed to only 

modified ones). 
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Figure 6 – Speedup of the Genetic Operators 

It can be inferred from Figure 6 that fitness evaluation 

offers superior speedups followed by Selection and 

Crossover. For the typical population size of 150, fitness 

evaluation offers ~50x speedup, Selection offers ~1.25x 

speedup and Crossover offers ~2.75x speedup. Selection and 

Crossover outperforms CPU for higher population sizes. 

This is mainly due to the superior memory bandwidth offered 

by GPU compared to CPU. 

Figure 7 and Figure 8 are pie charts showing the 

percentage of time spent by CPU and GPU implementations 

in various phases of the GA.  

Two important points emerge from Figure 7.  

• Energy evaluation dominates the GA completely in 

the CPU.  

• The population swapping operation takes the 

combined time of selection, crossover and mutation. 

Our experiments reveal that this phenomenon is 

observed for all kinds of population sizes. 

 

 
Figure 7 – GA on CPU: Time breakdown for pop size 150 

Figure 8 tells that selection and fitness dominate the GA 

for a population size of 150 in GPU. Our experiments show 

that as the population size increases, fitness’ domination 

increases close to 50%. Nonetheless, it is important to note 

that selection is also definitely a bottleneck for the GA in 

GPU.  

 
Figure 8 – GA on GPU: Time breakdown for pop size 150  

V. TESTING 

Testing was done with the ind-hsg ligand protein pair. We 

started testing by creating a CPU version of Autodock that 

would output necessary debug data that we wished to see and 

one that would run only the global search. We also made the 

CPU implementation evaluate energies in one shot during the 

GA process. The original implementation evaluated energies 

of individuals as and when they got modified during various 

phases of the GA. We changed this behavior to make the 

sequence of steps much like the GPU implementation. Both 

CPU and GPU random number generators were seeded with 

same numbers to make sure that results match.  

Energy evaluation was tested first. This was done by 

copying intermediate values, like atomic coordinates, 

intermediate energy values to separate files. Similar 

strategies were followed for other phases of GA. The biggest 

challenge was to maintain the order of random number 

generation between the CPU and GPU. Even a small misstep 

would cause complete deviations in the final result. 

VI. CONSIDERATIONS FOR LOCAL SEARCH ON GPUS 

Local search is a local optimization procedure used in 

Autodock. It is very time consuming and much of this time is 

spent in energy evaluation. Autodock uses a hill climbing 

method to perform local search on selected individuals. 

Local search is usually performed on a very small percentage 

of the population and hence offers little scope for parallel 

breakdown. Hence local search needs to be implemented in a 

different way on GPUs. We list two possible methods below. 

The merits of these methods need to be evaluated against an 

exhaustive training set. This is the reason why we consider 

this as a topic for a separate paper. 

A. Brute Force 

One could consider evaluating a bunch of random 

individuals around a sphere of configurable radius centered 

at the individual selected for Local Search. This is an 

embarrassingly parallel problem and will scale well on the 

GPU. 
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B. Gradient Method 

Using Gradients for Local Search is not a new idea. 

Autodock Vina [4] already uses a gradient based approach to 

optimize local search. Energy evaluation is a multi-variable 

function of genes. To find the local minima, it would be 

useful to find the partial derivative of this function with 

respect to all the genes and use that data intelligently to 

choose a local minimum. Finding the partial derivative with 

respect to all the genes for all selected individuals can be 

grouped together and executed on the GPU. 

VII. CONCLUSION AND FUTURE WORK 

The core Genetic Algorithm in Autodock has been 

accelerated using CUDA. Speedups ranging from 10x to 47x 

have been observed. The core fitness evaluation function has 

been sped up ~50x for typical population sizes. The efficient 

energy evaluation has laid the ground-work for implementing 

efficient local searches on GPU. The GPU power could also 

be used to explore new local search methods that were not 

viable to the scientists before.  The general guidelines 

discussed in this paper will be useful to anyone who is 

considering migration to CUDA.  

Future work can be to implement efficient GPU based 

local search and enhancement of results using double 

precision capability in GPUs. It would be interesting to see 

how the GPU implementation performs on a FERMI [10] 

which has 512 cores and 8x double precision power 

compared to current generation GPUs. 
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