

Abstract—This paper is a report on the migration of the

molecular docking application, “Autodock” to NVIDIA CUDA.

Autodock is a Drug Discovery Tool that uses a Genetic

Algorithm to find the optimal docking position of a ligand to a

protein. Speedup of Autodock greatly benefits the drug

discovery process. In this paper, we show how significant speed

up of Autodock can be achieved using NVIDIA CUDA. This

paper describes the strategy of porting the Genetic Algorithm to

CUDA. Three different parallel design alternatives are

discussed. The resultant implementation features ~50x speedup

on the fitness function evaluation and 10x to 47x speedup on the

core genetic algorithm.

I. INTRODUCTION

UTODOCK is a molecular docking application that is

widely used in drug discovery. It is available as open

source software under GPL. Autodock is developed and

maintained by TSRI [1].

In this paper, we present a CUDA [2] enabled version of

Autodock (version 4.2.1) that speeds up the core Genetic

Algorithm by two orders of magnitude. We chose to

parallelize Autodock at an architectural level than at a

functional level. We explored 3 different approaches for

efficient fitness calculation on GPU before choosing the best.

Our implementation gives a speedup of ~50x in fitness

evaluation for the typical usage. We also present a CGPU

(CPU+GPU) memory management approach suitable for

handling memory for large projects.

Our speedup results are a huge leap compared to the open

source project gpuAutodock [3]. gpuAutodock achieves 4%

(1.04x) speedup for typical population sizes and a similar

speedup for higher population sizes.

Autodock Vina [4] is a new docking tool from TSRI that

achieves two orders of magnitude speedup even on existing

hardware. Our speedups are similar to Vina. However this is

not an apple to apple comparison. Vina uses efficient local

search that reduces the evaluations needed to arrive at the

solution. As on today, Vina is distributed only in binary.

Local search algorithms are usually iterative and adaptive

and easily take up considerable amount of time in docking.

Much of this time is spent in fitness evaluation. By providing

efficient fitness evaluation on CUDA, we have laid the

Manuscript received January 31, 2010. This work was fully supported

by the Center of Excellence for High Performance Computing, HCL

Technologies.

Sarnath Kannan is with HCL Technologies, Bangalore, India (phone:

+91-80-41584000; e-mail: k_sarnath@hcl.in)

Raghavendra Ganji is with HCL Technologies, Bangalore, India (e-mail:

raghavendrag@hcl.in)

ground-work for implementing efficient local search on

GPUs.

This paper does not focus on Local Search. The hunt for a

suitable local search method for GPU (Graphics Processing

Unit) itself is a separate research work and deserves a

separate paper. This paper only focusses on implementation

of the Genetic Algorithm and the fitness function on CUDA.

Towards the end of paper, we briefly discuss some strategies

for efficient local search on the GPU.

II. CUDA ARCHITECTURE

CUDA stands for Compute Unified Device Architecture.

It is a GPGPU [5] technology pioneered by NVIDIA

Corporation. CUDA programs seamlessly run on a family of

GPUs from NVIDIA.

A. Physical View

At the physical level, the NVIDIA GPU can be seen as a

set of multi-processors (MP). Each MP has 8 SIMD cores.

MPs execute hardware threads as dictated by the CUDA

software. A bunch of 32 threads called a “warp” are always

executed together by the MP.

All MPs share a common global memory (GPU’s main

graphics memory). Each MP has 16KB of high-speed shared

memory placed under program control. These are unlike

CPU caches which are program un-aware. All MPs have an

8KB texture cache to accelerate texture fetches. The global

memory offers a very high bandwidth. This bandwidth is

manifold of CPU’s main memory bandwidth.

Some of the commonly used math library functions are

directly implemented on the hardware. For example sqrtf,

sinf, cosf, reciprocal sqrtf etc.

The hardware is capable of hiding latencies by

overlapping computation from different threads with memory

access. Scheduling a lot of threads also help to avoid “Read-

After-Write” dependencies in the execution pipeline

resulting in superior performance. The concept is very

similar to Hyper-threading but is done massively and

efficiently by the CUDA hardware [6].

B. Logical View

CUDA programming model allows programmers to

launch software kernels to run on the GPU. The programmer

can specify the number of thread blocks that need to be

spawned by the hardware while launching the CUDA kernel.

The GPU hardware takes care of spawning the thread blocks

and executing the kernel. A thread block is a bunch of

hardware threads tied to a shared memory region. The

physical number of MPs in the underlying hardware has no

Porting Autodock to CUDA

Sarnath Kannan, Raghavendra Ganji

A

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 3815

bearing on the number of thread blocks that can be launched.

CUDA provides for synchronization and memory

consistency primitives for all threads inside a thread block.

However, the thread blocks themselves are completely

independent of each other and cannot be synchronized.

Recent versions of CUDA hardware support global atomics

and global memory consistency primitives enabling thread

blocks to communicate and synchronize with each other.

Frequently used data can be stored in shared memory to

accelerate computations. The CUDA programming model

requires adjacent threads to access adjacent memory

locations for the best memory bandwidth. This concept is

called Memory Coalescing and it reduces the number of trips

to memory. Applications requiring random access can

benefit from textures. CUDA offers 1D, 2D and 3D read-

only textures optimized for spatial locality. Control

statements like “if”, “for” and “while” can split warps

causing loss of hardware cycles.

III. AUTODOCK BACKGROUND

Autodock uses a Lamarckian Genetic Algorithm to search

for the optimal docking position of a ligand inside a protein.

The ligand is also referred as small molecule. The protein is

also referred as Macro Molecule or the Receptor. This paper

will focus only on the core Genetic Algorithm (GA). The

Lamarckian variant pertains to local search which is “not” a

focus of this paper.

A. Solution Space

Autodock attempts to find the optimal docked position of

the ligand inside a 3D grid box specified in the active site of

the protein. The 3D grid box represents the solution space.

This box is a continuous space and hence the total number of

possible solutions is infinite. Each 3D point inside this grid

box is a potential candidate where the ligand can be

centered. Autodock uses discrete 3D energy points for fitness

evaluation purposes and uses tri-linear interpolation to arrive

at approximate energies.

B. Genetic Code (chromosome)

Genetic Algorithms usually identify the notion of an

individual and its genetic code (Chromosome) with respect

to the problem’s solution space. The genetic code must

uniquely identify a candidate solution.

Autodock treats a particular orientation of the ligand

inside the protein as an “individual” in its GA. Hence

Autodock’s genetic code uniquely identifies the orientation

of a ligand.

Autodock represents the chromosome as a vector of real

numbers. Each element in the vector stands for a gene. A

pictorial representation of the chromosome can be found in

Figure 1. Following parameters are used as genes contained

in an individual’s chromosome.

• X,Y,Z-Translations of the center of ligand inside the

3D grid box (3 genes)

• Quaternion Information (4 genes – w, x, y, z) that

specifies the overall 3D orientation of the ligand

• Torsion angle information for each rotatable bond in

the ligand (“Rotatable bonds” number of genes)

Figure 1 - Autodock GA Chromosome Representation

C. Genetic Operators

Autodock performs all the genetic operators namely,

Selection, Crossover and Mutation on the genetic code.

D. Fitness Evaluation

Fitness evaluation evaluates the total energy of a particular

orientation of the ligand inside the protein. Lower is better.

E. Typical GA parameters

Here are some typical parameters used while running

Autodock [7].

• Population Size – 150

• Crossover Rate – 80% of individuals undergo

Crossover on every generation

• Mutation Rate – 2% of the total genes in a

population undergo mutation on every generation

IV. AUTODOCK GA ON CUDA

This section is broadly structured as follows

• High Level Guidelines adopted for CUDA Migration

• Fitness function on CUDA

• Genetic Operators on CUDA

• Results

The results shared in this paper used the following

configurations

• AMD Athlon, 2.41GHz, 64 KB L1 I-Cache, 64 KB

L1 D-Cache, 512KB L2 Cache, 2GB RAM

• Tesla C1060, 240 cores @ 1.3GHz, 4GB Graphics

RAM

• The ind-hsg ligand protein pair that comes with

Autodock tutorial was used for docking. The “ind”

molecule has 12 rotatable bonds (torsions) and

“hsg” has a flexible side chain as well. Together

they represent a typical docking pair.

• Proportional Selection

• Uniform 2-point Crossover with a rate of 80% of

individuals per generation

Translation genes

specifying the

center of ligand

inside the 3D grid

Quaternion genes

specifying the 3D

orientation of the

ligand

Torsion Angle genes

specifying the angles

of ‘N’ rotatable

bonds in the ligand

Tx Ty Tz Qx Qy Qz Qw R1 Rn

3816

• Mutation rate of 2% of total genes per generation

A. High Level Guidelines adopted for CUDA Migration

1) Floating Point Precision

One of the earliest design choices that we made was to use

single-precision arithmetic. This is harmless because GA

depends on relative goodness among individuals’ energies

and single precision may not affect the accuracy of GA path

significantly.

2) GA State Maintenance

We decided to keep as much GA State in the GPU itself

and perform the GA operators using GPU kernels. This

decision is critical because this eliminates un-necessary

memory copies back and forth GPU memory and host PC’s

main memory. GA State includes the chromosomes of all

individuals in the current population, Energy values of

individuals, chromosomes of all individuals in new

population and so on.

3) Phenotypes

The Genetic Algorithm used in Autodock does not

differentiate between a genotype and a phenotype. Autodock

merely duplicates the genotype to create the phenotype.

Logically, the atomic coordinates of each participating atom

is the phenotype resulting from a genotype. Although

Autodock does generate the logical phenotype eventually, it

does “not” represent the same as a “phenotype” in the

software. Instead the software merely duplicates the

genotype to generate the phenotype. In our implementation,

we did away with this redundancy and maintained only one

single copy. This helped in minimizing un-necessary

memory copies.

4) Random Numbers

The random number generator used in Autodock

maintains state information and is difficult to port to GPU.

For testing purposes, we required the CPU and GPU

implementations to generate the same stream of random

numbers. Hence we retained the random number generation

in the CPU itself. This has two advantages:

• Enables one to one comparisons of CPU and GPU

results. This is very important in validating the

accuracy of GPU implementation.

• Reduce the design, coding and validation effort of

generating random numbers on GPU.

5) CGPU Memory Manager

The Autodock program involves a lot of memory buffers.

Majority of them are one time copies needed only during

initialization, for example, the energy map files. Some of

others are dynamic and need to be transferred to and from

GPU and host PC’s main memory. We came up with the idea

of a CGPU memory manager, implemented as a C++ object

which features the following:

• Avoid GPU memory fragmentation by pooling

related memory requests

• Support Alignment for individual memory requests

• Support for pinned memory

• Copy related buffers between CPU and GPU in one

shot, typically using operator overloading

• Free related buffers in 1 shot

The CGPU memory manager object could be constructed in

one of the following ways

• Specifying the location as CPU or GPU

• Pairing with another CGPU memory manager object.

The pair could be homogeneous or heterogeneous

with respect to the location, the default being

heterogeneous. A use case for homogeneous pair

can be found in the Selection operator section

below.

• Specifying a vector of allocation requests (the

location defaults to GPU unless otherwise

specified)

All of the construction interfaces offer an optional flag to

signal a ‘pinned’ memory allocation.

6) Root Structures

Root Structures hold information and pointers to data used

in the GA. Our implementation used two Root structures,

namely CPURoot and GPURoot. The GA initialization

module creates memory objects, allocates memory, copies

data, retrieves the memory pointers and populates them in

the CPURoot and GPURoot structures. Both the structures

were made available globally to other modules of the GA.

This helped us in the following.

• To clearly demarcate CPU and GPU pointers

• To create a hierarchy of pointers and data that gave

structure to the code

B. Fitness Function (Energy Evaluation) on CUDA

Energy evaluation is the fitness function used by

Autodock’s GA. For every generation, the energies of all the

individuals are re-calculated. In practice, only the modified

ones get re-calculated. With 80% crossover rate, majority of

the population gets modified every generation, which is a

sizeable number. Our strategy was to evaluate all the

individuals in a population regardless of modifications. This

strategy is also helped by the fact that the entire GA state

resides inside the GPU.

Energy of a particular individual is the sum of inter-

molecular energy (between atoms of ligand and receptor)

and intra-molecular energy (amongst movable atoms in the

ligand and flexible side-chain in the receptor).

• Fitness evaluation starts by locating the atom

coordinates of each atom in the ligand based on its

genetic code. (torsion() , qtransform() functions)

• Once the coordinates of the atoms in the 3D box are

known, the inter-molecular energies of each atom in

the ligand are summed up. The inter-molecular

energy values are pre-generated by Autogrid [8] for

every atom type in the ligand and available as

energy map files. Since the atomic coordinates are

in continuous space, Autodock performs tri-linear

3817

interpolation based on values in the energy map

files and the atom type. (trilinterp() function)

• Autodock runs through the non-bond list evaluating

intra-molecular energies. (eintcal() function).

1) Design Alternatives

We explored 2 different approaches to evaluate the fitness

function on CUDA. One was to dedicate one GPU thread to

calculate the energy of one individual (PerThread). The

other approach was to use one GPU Thread Block for

calculating the energy of one individual (PerBlock). The

final design was a variant of PerBlock approach and is

explained in the next section. Here is a brief comparison of

the two parallel approaches.

Table 1 - Comparison of 2 approaches to Parallel

breakdown of the Fitness function

 PerThread Parallel

Breakdown

Approach

PerBlock Parallel

Breakdown Approach

1 Parallelism exploited

at inter-individual

level. Parallelism is

proportional to the

population size.

Parallelism exploited at

intra-individual level. This

is usually a function of the

number of atoms

participating in the docking

(atoms in ligand + atoms

in flexible side chain)

2 Requires population

size in thousands to

saturate the GPU.

A modest population in

hundreds is enough to

saturate the GPU

3 Only common data to

all individuals can be

placed in shared

memory.

All data pertaining to a

particular individual can be

placed in shared memory.

Common data can be

accessed via textures.

4 Applying Torsions is

straight forward. Each

thread applies the

necessary torsions for

the individual it

controls.

Since an atom’s

coordinates could be

dictated by more than one

torsion entry, parallelism is

restricted to the atoms

affected by a single torsion.

(which could be very less)

5 Summing the energies

is straight forward.

Each thread sums up

the energy values for

the individual it

controls.

Summing the energies

require a reduction [9]

towards the end.

We designed the following set of 5 kernels for both the

approaches

1. Atomic coordinate initialization

2. Applying Torsion

3. Applying qtransform

4. Tri-linear Interpolation

5. Internal energy calculation

We used structure of arrays so that PerThread kernels

accessed memory in a coalesced way.

Figure 2 and Figure 3 show the breakdown of typical time

taken for the 5 steps for the PerThread and PerBlock cases

on the GPU. A population size of 5760 was used in

PerThread case. A population size of 300 was used in

PerBlock case. These numbers were chosen to saturate the

GPU completely. Tri-linear interpolation and internal energy

calculation dominate the computation in both cases. Both the

steps are memory intensive and that explains why they take

the most time. The PerBlock implementation spends

relatively more time in torsion. This can be attributed to the

4
th

 point in Table 1.

Figure 4 shows the performance results of the two

approaches. PerBlock approach performs ~12x faster than

the PerThread for the typical population size of 150.

It is worth noting that CUDA hardware provides hardware

support for 3D Textures and tri-linear interpolation. The tri-

linear interpolation function can be replaced by a single

“tex3D” instruction on the GPU. However the GPU

hardware performs the interpolation with reduced precision.

Our implementation can be compiled with/without hardware

interpolation. In any case, 3D textures accelerated tri-linear

interpolation by a great amount due to the 3D spatial

locality involved in interpolation. This feature was exploited

in both PerThread and PerBlock kernels. We never enabled

the hardware interpolation in any of the tests discussed in

this paper because it caused the results to differ significantly.

Figure 2 – Fitness function on GPU: Time breakdown for

PerThread Approach

3818

Figure 3 – Fitness function on GPU: Time breakdown for

PerBlock Approach

2) Final Design

The final design is an improvement over the “PerBlock”

approach. All the 5 PerBlock kernels write and/or read all

the atomic coordinates pertaining to an individual. This

overhead can be completely eliminated if one chooses to

launch only one kernel and keep all the atomic coordinates

cached in shared memory. We refer this implementation as

“PerBlockCached”. This approach outperforms the PerBlock

implementation consistently.

However this approach limits the number of atoms that

can be supported for docking. CUDA hardware provides

16KB of shared memory per MP. Out of this roughly 14KB

is used for storing 3D atomic coordinates. This can help

store about a 1000 atoms. Autodock supports a maximum of

2000 atoms. However for practical purposes 1000 is enough.

With the advent of Fermi [10], CUDA applications can use

48KB of shared memory that can easily accommodate 2000

atoms.

3) Results of Energy Evaluation (Fitness)

Figure 4 shows the comparative results of the three

different approaches. The PerBlockCached kernel

outperforms the other two for both smaller and relatively

larger population sizes. The PerBlockCached kernel runs

~19x faster than PerThread and ~1.55x faster than the

PerBlock kernel for the typical population size of 150. The

PerThread kernel gives the best performance for very high

population sizes. The PerBlockCached kernel outperforms

the PerBlock kernel by a factor of ~1.2x to ~1.5x for the

considered range of population sizes.

Applying torsions takes significant amount of time in

PerBlock and PerBlockCached versions. This is one reason

why PerThread version performs much better for higher

population sizes. Our final implementation dynamically

selected the kernels according to the population size

specified by the user. There is still scope for improving

torsion operation in PerBlock variants.

Figure 4 – Fitness function on GPU: Comparison of 3

parallel breakdown approaches

Figure 6 shows speedups achieved for various GA

operators with respect to the CPU. The fitness operator in

Figure 6 corresponds to the PerBlockCached variant. It

yields a speedup of ~50x over CPU for the typical

population size of 150. The “dip” in the speedup at the

population size of 200 can be explained by the fact that

CUDA hardware idles for certain population sizes (which is

equal to the number of thread blocks). One can also see that

the fitness speed up saturates at 60x for huge population

sizes.

C. Selection

Selection process involves calculation of relative merit of

each individual and selecting the eligible ones from the

current population and copying them to the new population.

Autodock supports multiple selection modes. Our GPU

implementation supports only the “selection proportional”

method as this is the default selection mode in Autodock.

The selection process was implemented as a GPU kernel

that copied marked individuals from old population to the

new population. The CPU merely indicated which

individuals need to be copied. Our implementation used

GPU to calculate the population average and relative merit

of each individual and this was overlapped with other

selection related work like permuting the ordering array on

the CPU.

One can infer from Figure 6 that selection performs almost

as good as CPU for lesser population sizes but slowly

outperforms the CPU as the population size increases. The

time complexity of Selection depends on the fitness of the

population. That explains why the speedup graph for

Selection is non-linear.

Selection requires two population instances to exist inside

the GPU. Having one population instance causes read-write

parallel hazards as GPU threads copy individuals (read) from

old population and update (write) the new population. This

forms a use case for support for homogeneous pairs in

CGPU memory manager.

3819

D. Crossover

Crossover process involves exchanging genetic code

between two selected individuals at selected gene locations.

Crossover was implemented as a GPU kernel. Our GPU

implementation supports only the 2-point crossover mode

which is the default mode used by Autodock.

The GPU kernel exploited the pair-level parallelism.

Autodock generates unique crossover pairs which is a

necessary condition for running Crossover in parallel on

GPU. One can infer from Figure 6 that Crossover operation

on GPU linearly increases in speedup. This is expected

because an increase in population size increases the number

of Crossover operations and GPU gets loaded fully.

We would also like to share that we identified a bug in the

Crossover implementation of Autodock during this process

[11].

E. Mutation

Autodock implements the Mutation process by modifying

random genes chosen from random individuals. The GPU

implementation of the Mutation process exploits the per-

mutation parallelism. However, Autodock allows a gene to

be mutated more than once. These repeated mutations cause

a parallel hazard in exploiting per-mutation parallelism.

This can be avoided in 2 ways. One approach would be to

exploit per-gene parallelism instead of per-mutation

parallelism. This approach will accommodate multiple

mutations to the same gene. The other approach would be to

avoid multiple-mutations. Our implementation chose the

second one.

The GPU implementation features a Mutation Manager

that avoids more than 1 mutation to a gene. The manager re-

maps a colliding mutation to an un-mutated gene. For this

reason, the GPU implementation results deviate from CPU

implementation when mutations are enabled.

1) Mutation Manager

Mutation Manager simply re-maps colliding gene

mutations. It uses a bit array to identify genes that are

already mutated. An alternate approach would be to replace

multiple mutations occurring on a same gene with a single

mutation that causes the combined effect. This is quite

possible if the mutation operator is associative. Non-

associative mutation operations still need to be managed with

re-mappings. We have not investigated the associative

properties of the mutation operator in Autodock.

Figure 6 shows that mutation in GPU performs worse than

the CPU. Experiments show that GPU mutation runs almost

6x slower than the CPU when 1% of total genes in a

population undergo mutation. The number decreases to 4x

when 2% undergo mutation. The increase in parallelism

works to GPU’s benefit in the 2% case. The slowness is

mainly due to the overhead of Mutation Manager. Since

mutation corresponds to a very minimal part of the GA, this

does not affect the overall speedup. This can be inferred

from Figure 7

F. Population swapping

When the new population is ready to go, our

implementation merely swaps out the old and new pointers

instead of copying data. This is in sharp contrast with

Autodock that copies the new population to old population

and destroys the newly created object. The current CPU

implementation of Autodock can be easily sped up by

employing an object reference swapping scheme instead of

copying and destroying.

G. Results

1) Accuracy

CPU and GPU Results were comparable for smaller

number of generations. However, deviations were observed

when the number of generations increased to thousands. This

was traced to energy evaluation results. Difference in order

of floating point calculations (the reductions) and the single

precision nature of computation (Intel CPUs use 80-bits

precision internally) causes GPU evaluated energy values to

slightly differ from CPU. This causes a change in the

Selection process that affects the course of the GA. We

believe that this will not be an issue and that several runs of

Autodock with random seeds would help in identifying good

ligand-protein conformations.

2) Speedups

Figure 5 shows the net speedup of the GA with respect to

the population size. The core GA used by Autodock got

accelerated by 10x to 47x depending on the chosen

population size.

Figure 5 - Overall GA Speedup

Figure 6 shows the speedup of various GA phases with

respect to the population size. To make one to one

comparisons, we changed the CPU implementation not to

evaluate energies in selection, Crossover and mutation

phases. But the energies were evaluated for the entire

population after the GA phases ended (as opposed to only

modified ones).

3820

Figure 6 – Speedup of the Genetic Operators

It can be inferred from Figure 6 that fitness evaluation

offers superior speedups followed by Selection and

Crossover. For the typical population size of 150, fitness

evaluation offers ~50x speedup, Selection offers ~1.25x

speedup and Crossover offers ~2.75x speedup. Selection and

Crossover outperforms CPU for higher population sizes.

This is mainly due to the superior memory bandwidth offered

by GPU compared to CPU.

Figure 7 and Figure 8 are pie charts showing the

percentage of time spent by CPU and GPU implementations

in various phases of the GA.

Two important points emerge from Figure 7.

• Energy evaluation dominates the GA completely in

the CPU.

• The population swapping operation takes the

combined time of selection, crossover and mutation.

Our experiments reveal that this phenomenon is

observed for all kinds of population sizes.

Figure 7 – GA on CPU: Time breakdown for pop size 150

Figure 8 tells that selection and fitness dominate the GA

for a population size of 150 in GPU. Our experiments show

that as the population size increases, fitness’ domination

increases close to 50%. Nonetheless, it is important to note

that selection is also definitely a bottleneck for the GA in

GPU.

Figure 8 – GA on GPU: Time breakdown for pop size 150

V. TESTING

Testing was done with the ind-hsg ligand protein pair. We

started testing by creating a CPU version of Autodock that

would output necessary debug data that we wished to see and

one that would run only the global search. We also made the

CPU implementation evaluate energies in one shot during the

GA process. The original implementation evaluated energies

of individuals as and when they got modified during various

phases of the GA. We changed this behavior to make the

sequence of steps much like the GPU implementation. Both

CPU and GPU random number generators were seeded with

same numbers to make sure that results match.

Energy evaluation was tested first. This was done by

copying intermediate values, like atomic coordinates,

intermediate energy values to separate files. Similar

strategies were followed for other phases of GA. The biggest

challenge was to maintain the order of random number

generation between the CPU and GPU. Even a small misstep

would cause complete deviations in the final result.

VI. CONSIDERATIONS FOR LOCAL SEARCH ON GPUS

Local search is a local optimization procedure used in

Autodock. It is very time consuming and much of this time is

spent in energy evaluation. Autodock uses a hill climbing

method to perform local search on selected individuals.

Local search is usually performed on a very small percentage

of the population and hence offers little scope for parallel

breakdown. Hence local search needs to be implemented in a

different way on GPUs. We list two possible methods below.

The merits of these methods need to be evaluated against an

exhaustive training set. This is the reason why we consider

this as a topic for a separate paper.

A. Brute Force

One could consider evaluating a bunch of random

individuals around a sphere of configurable radius centered

at the individual selected for Local Search. This is an

embarrassingly parallel problem and will scale well on the

GPU.

3821

B. Gradient Method

Using Gradients for Local Search is not a new idea.

Autodock Vina [4] already uses a gradient based approach to

optimize local search. Energy evaluation is a multi-variable

function of genes. To find the local minima, it would be

useful to find the partial derivative of this function with

respect to all the genes and use that data intelligently to

choose a local minimum. Finding the partial derivative with

respect to all the genes for all selected individuals can be

grouped together and executed on the GPU.

VII. CONCLUSION AND FUTURE WORK

The core Genetic Algorithm in Autodock has been

accelerated using CUDA. Speedups ranging from 10x to 47x

have been observed. The core fitness evaluation function has

been sped up ~50x for typical population sizes. The efficient

energy evaluation has laid the ground-work for implementing

efficient local searches on GPU. The GPU power could also

be used to explore new local search methods that were not

viable to the scientists before. The general guidelines

discussed in this paper will be useful to anyone who is

considering migration to CUDA.

Future work can be to implement efficient GPU based

local search and enhancement of results using double

precision capability in GPUs. It would be interesting to see

how the GPU implementation performs on a FERMI [10]

which has 512 cores and 8x double precision power

compared to current generation GPUs.

VIII. ACKNOWLEDGMENT

We would like to thank the management of HCL

Technologies for funding our research work. We would like

to thank the following people from HCL Technologies - Dr.

Nagesh for his reviews, Rohini Srinivasan for introducing

Autodock to us, Arjun, Madhusudan and Manjunatha Hebbar

for supporting our work. We would also like to thank Dr.

Garrett, Dr. Trott, Mike Pique and Ruth Huey from TSRI [1]

for answering our questions time and again. Special thanks to

NVIDIA forums. Finally, we would like to thank the

anonymous reviewers for their useful comments.

REFERENCES

[1] TSRI, “The Scripps Research institute”, http://www.scripps.edu

[2] CUDA, ”The CUDA Zone”, http://www.nvidia.com/cuda

[3] Timothy Blattner, D. H. (2009, 5 8). “AutoDock Software in Parallel

with GPUs – Final Report”,

http://sourceforge.net/projects/gpuautodock/files/gpuautodock/GPUA

UTODOCK.1.0.0/final_prototype_report.pdf/download

[4] Oleg Trott, Arthur J. Olson, “AutoDock Vina: Improving the speed

and accuracy of docking with a new scoring function, efficient

optimization, and multithreading”, Journal of Computational

Chemistry, vol. 31, No 2, 2010, pp. 455-461

[5] GPGPU, “General Purpose Computation on Graphics Processing

Units”, http://gpgpu.org

[6] Tom R. Halfhill, “Looking Beyond Graphics”,

http://www.nvidia.com/content/PDF/fermi_white_papers/T.Halfhill_L

ooking_Beyond_Graphics.pdf , page 4

[7] Autodock FAQ. “Official Autodock Website”,

http://autodock.scripps.edu/faqs-help/faq/which-values-of-the-

genetic-algorithm-parameters-do-you-normally-use

[8] “Autogrid”, http://autodock.scripps.edu/wiki/AutoGrid

[9] “Prefix Sums”, Wikipedia, http://en.wikipedia.org/wiki/Prefix_sum

[10] NVIDIA Corporation, “NVIDIA’s next generation CUDA Compute

Architecture: FERMI”,

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fe

rmi_Compute_Architecture_Whitepaper.pdf

[11] Sarnath Kannan, “Crossover bug”,

http://mgl.scripps.edu/forum/viewtopic.php?f=9&t=677&sid=ce704d

82725f4255bd0ef5ad7b043811

3822

