Random Numbers on GPUs

W. B. Langdon

Mathematical and Biological Sciences
and Computing and Electronic Systems

i University of Essex

CIGPU 2008

Introduction

Artificial Intelligence needs Randomisation
Implementing randomisation is hard.

GPU no native support for bit level
operations, long integers etc.

Widespread fear of GPU implementation of
random numbers.

Demonstrate GPU can generate billions of
random numbers.

400+ speedup v single precision Park-Miller

W. B. Langdon, Essex

Need for Random Numbers

« Many Computational Intelligence techniques
need cheap randomisation
— Evolutionary computation: selection and mutation
— Simulated Annealing

— Artificial Neural Networks: random initial
connection weights

— Particle Swarm Optimisation
— Monte Carlo methods, e.g. finance, option pricing

W. B. Langdon, Essex 5

Anyone who considers arithmetical methods of
producing random digits is, of course, In a state of sin.

John von Neumann

 History of pseudo random numbers (PRNG)
is littered with poor implementations. IBM'’s
randu described by Knuth as “really horrible”.

o Still true: bug in SUN’s random.c

« Care needed when choosing random method
Knuth

Park and Miller

Park-Miller big study of linear congruent
PRNGs. Fast.

Suggest “minimal standard” PRNG.
Uniform integer in 1 to 2°

Mandatory PRNG for proposed internet
error correction standard.

Requires 46 bits (Mersenne Twister =20Kk).

46 bits typically implemented using long int
or double precision. Not available on GPU.

W. B. Langdon, Essex 7

Park-Miller

intrnd (int& prng) { /| T<=prng<m
intconsta = 16807; /lie 75
int constm =2147483647;//ie 2**31-1
prng = (long(prng * a))%m,
}

* Next “random” number produced by

multiplying current by 7° then reducing to
range 1 to 23" -2 using modulus %m

* Multiplication produces 46 bit result
 All calculations use integers

GPU Park-Miller

C++ implementation under RapidMind
GPU float only single precision

Use Value4t (vector of 4 floats) to store
and pass random numbers.

31 bits of Park-Miller broken into 4 bytes.
Each byte stored as float. So no rounding
problems.

Value4f native GPU data type.

W. B. Langdon, Essex

exactmul /- x —Valuebf

exactmul(float f, float in[4], float out[5]) {
out[0]=0;
for(int 1=0;i<4;i++) {
const float t=in[i]*f;
outfi] +=t; /Max value 16807+16807x255
out[i+1] = floor(out[i}/256);
out[i] = Int(out[i])%256;
}
}

By performing multiplication a byte at a time
calculation can be done with float

10

Parallel RapidMind exactmul

X —\Valuebf

inline void exactmul(const Valueif i, const Value4f in,
Value<5,float>& out) {
//RM_DEBUG_ASSERT (f<= Value1f(16807));
out[0]=0;
for(int i1=0;i<4;i++) {
out[i] += round(in[i]*");
out[i+1] = floor(out[i}/Value1f(256));
out[i] = round(Valueli(out[i])%256);
}
}

multiplication a byte at a time so can be done with float.
round to ensure exact integer values. 11

Valuebf used to represent 46 bits

-8 bits—

-4— 14 bits —»

7

Most significant bit

",//////,,,,,-Least

significant bit

07
8—15

16-23
24-31
32-45

12

prng = (prngx7°)%2147483647

o After exactmul need to reduce modulus
2147483647 but 237-1 can not be
represented exactly by float.

* Replace % by finding largest exact
multiple of 2°1-1 which does not exceed
prngx7°then subtract it from prngx7~.

— Avoids long division

 This gives the next Park-Miller pseudo
random number.

W. B. Langdon, Essex 13

Finding largest multiple of 231-1
not exceeding prngx7>

Find (approx) (prngx7°)/(231-1)
Refine approximation
Multiply exact divisor by 231-1

Obtain next PRNG by subtracting exact
multiple of 23'-1 from prngx7°.

Multiply and subtraction can be done
exactly (using trick of spliting long integer
into 8-bit bytes and storing these in floats).

W. B. Langdon, Essex 14

Finding Largest Divisor 1

Valueli approxdiv = floor(prng*a/m);
Valueli comp = -1; // loop at least once
FOR(nul,comp<0,nul) {
exactmul(Value1f(approxdiv),M,multiM);
comp=compS(out,multiM); //nb out=a*Prng
approxdiv--;
IENDFOR
a=7>M = 231-1
* For loop used to decrement approxdiv until
multiM=approxdivx(23'-1) < prngx7°

* Mostly only loop only used 1 or 2 times.

15

Finding Largest Divisor 2

exactsub5(out,multiM,Prng); // prng = out-multiM
FOR(nul,comp4(Prng,M)>=0,nul) {
exactsub4(Prng,M,Prng); // prng=prng-m;

'ENDFOR
a=7°>M = 231-1

* |n case approxdiv was too low the FOR
loop is used to reduce the new PRNG by
repeatedly subtracting 23'-1 until it is below
231-1,

16

Comp4 using RapidMind

inline Valueli comp4(const Value4f a, const Value4f b) {

return cond(a

cond(a
cond(a
cond(a

(
(
cond(
(
(
(

Q)

cond
cond(a
cond(a

Q

}

3!
2]
2]
1]
1]
0!
0

3]>b

<b|

>P|
<b|
>P|
<b|
>P|
<b|

SO SN W

3],Valueli(+1),

Va

1.Va
,Va
,Va
,Va
,Va
1.Va

ue’

ue
ue
ue
ue
ue

11(-1),Value11(0)))))))));

ue

I(-1),
I(+)
I(-
I
I(-
(
I(-

|+)

Use GPU cond to compare most significant parts
of a and b first

17

Exactsub5 using RapidMind

- Operate on local copies of inputs to avoid side
effects on calling code.

« Requires a=b and a-b fits in 4 bytes

« Subtract BJi] from A[i]. Use round to force integer
 If A[i]<B[i] “borrow” 256 from B[i+1].

* No negative values

/Inb a>=b
for(int i=0;i<4;i++) {
Bli+1] = cond(A[i]<B[i],round(B[i+1]+Value1f(1)),B[i+1]);
AJi] = cond(A[i]<B]Ji],round(A[i]+Value1f(256)),A[i]);
out[i] = round(A[i]-BJi]);
}
//A[5]==BI9] 18

Validation

» RapidMind GPU and two PC version of
Park-Miller were each validated by
generating at least the first 100 million
numbers in the Park-Miller sequence and
comparing with results in Park and Miller's
paper and www.

W. B. Langdon, Essex 19

Performance V threads

Force 8888 GTX Park-HillersSec
1e+A9
o T + + 4+ + + o+
+
= + +
=
[=]
g +
" let0s |
g +
(=8
- +
LE]
*
° +
1]
g
 le+d7 +
" I
& +
o
s
2 +
5
2 +
E 1e+86
o I +
+
1E+Hﬁ 1 1 1 1 1 1 1 1 1 1 1
1 4 16 64 256 16824 4K 16K 64K 956K 1H 4H

active pseudo random nunber threads on 8888 GTX GPU

In test environment, with = 8192 threads the 128 stream
processors give peak performance. l.e. 216 active
threads per SP. Or 2512 threads per G80 8SP block. 2

Performance

nVidia GeForce 8800 GTX (128 SP)

833 10° random numbers/second

44 times double precision CPU (2.40Ghz)
More than 400 times single precision CPU

Estimate 90 GFlops (17% max 518.4
nVidia claim)

W. B. Langdon, Essex 21

Discussion

90GFlops too high?
Test harness semi-realistic.

GPU application, PRNG just a small part, but
avoids communication with CPU.

Main bottle neck is access to GPU’s main
memory.

PRNG faster if use on-chip memory but
application may want this for other reasons.

Importance of many threads (min 512).

W. B. Langdon, Essex 22

Conclusions

Cheap randomisation widely needed but
often poorly implemented.

Fear of PRNG on GPU (said GPU cant do)
Park-Miller fast but needs more than float

GPU implementation meets Park and
Miller's minimum recommendation.

RapidMind C++ Code available via ftp.

Up to 833 million pseudo random numbers
per second.

W. B. Langdon, Essex 23

END

W. B. Langdon, Essex

24

Questions
» Code via ftp

— http://www.cs.ucl.ac.uk/staff/W.Langdon
/ftp/gp-code/random-numbers/gpu park-
miller.tar.gz

* gpgpu.org GPgpgpu.com
rapidmind.com

W. B. Langdon, Essex 25

