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8 The Evolution of Size and Shape
W. B. Langdon, T. Soule, R. Poli and J. A. Foster

The phenomenon of growth in program size in genetic programming populations has been widely
reported. In a variety of experiments and static analysis we test the standard protective code expla-
nation and find it to be incomplete. We suggest bloat is primarily due to distribution of fitness in the
space of possible programs and because of this, in the absence of bias, it is in general inherent in any
search technique using a variable length representation.

We investigate the fitness landscape produced by program tree-based genetic operators when act-
ing upon points in the search space. We show bloat in common operators is primarily due to the
exponential shape of the underlying search space. Nevertheless we demonstrate new operators with
considerably reduced bloating characteristics. We also describe mechanisms whereby bloat arises
and relate these back to the shape of the search space. Finally we show our simple random walk
entropy increasing model is able to predict the shape of evolved programs.

8.1 Introduction

The rapid growth of programs produced by genetic programming (GP) is a well docu-
mented phenomenon [Koza, 1992; Blickle and Thiele, 1994; Nordin and Banzhaf, 1995;
McPhee and Miller, 1995; Soule et al., 1996; Greeff and Aldrich, 1997; Soule, 1998]. This
growth, often referred to as “code bloat”, need not be correlated with increases in the fit-
ness of the evolving programs and consists primarily of code which does not change the
semantics of the evolving program. The rate of growth appears to vary depending upon the
particular genetic programming paradigm being used, but exponential rates of growth have
been documented [Nordin and Banzhaf, 1995].

Code bloat occurs in both tree based and linear genomes [Nordin, 1997; Nordin and
Banzhaf, 1995; Nordin et al., 1997] and with automatically defined functions [Langdon,
1995]. Recent research suggests that code bloat will occur in most fitness based search tech-
niques which allow variable length solutions [Langdon, 1998b; Langdon and Poli, 1997b].

Clearly, an exponential rate of growth precludes the extended use of GP or any other
search technique which suffers from code bloat. Even linear growth seriously hampers
an extended search. This alone is reason to be concerned about code growth. However,
the rapid increase in solution size can also decrease the likelihood of finding improved
solutions. Since no clear benefits offset these detrimental effects, practical solutions to the
code bloat phenomenon are necessary to make GP and related search techniques feasible
for real-world applications.

Many techniques exist for limiting code bloat [Koza, 1992; Iba et al., 1994; Zhang and
Mühlenbein, 1995; Blickle, 1996; Rosca, 1997; Nordin et al., 1996; Soule and Foster, 1997;
Hooper et al., 1997]. However, without definitive knowledge regarding the causes of code
bloat, any solution is likely to have serious shortcomings or undesirable side effects. A
robust solution to code bloat should follow from, not precede, knowledge of what actually
causes the phenomenon in the first place.
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Figure 8.1
How cells express DNA: 1. Transcribe DNA to RNA; 2. Remove introns; 3. Translate to proteins (not to scale).

We present the latest research into the causes of code bloat. This research clearly demon-
strates that there are several distinct causes of code bloat. Each of these causes appears to
operate in both GP and other, related, search techniques. Thus, any general strategy for
countering code bloat should address all of these causes.

This research promises to do more than merely lead to more feasible controls for code
bloat. It also sheds some much needed light on the process of evolution, or, at least, artificial
evolution. Code bloat research helps identify more of the many, often conflicting, forces
which influence an evolving population.

In the next section we describe the historical background to bloat including previous
work on it. In Section 8.3 we suggest program spaces may be to a large extent independent
of program length, in that over a wide range of program lengths the distribution of fitness
values does not change dramatically. Section 8.4 reconciles this with bloat and indeed
suggests bloat, in the absence of bias, is general. Sections 8.5 to 8.7 experimentally test
these theories. The experiments are followed by a discussion of their significance and of
bloat more generally in Section 8.8 and conclusions in Section 8.9. Finally we give some
suggestions for future work.

8.2 Background

In living organisms, molecules transcribe the DNA in each gene into RNA, edit out portions
of the RNA, and then translate the remaining RNA into a protein. Exons are gene segments
which produce protein building blocks, and introns are the non-expressed segments. See
Figure 8.1.
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Many natural genomes contain both genic DNA, which encodes the genes, and non-
genic (sometimes called “junk”) DNA. Many genomes are predominantly non-genic. For
example, human DNA is approximately 95% non-genic. There is no correlation between
genome size and the ratio of genic to non-genic DNA, the complexity of the organism, or
the ancestry of the organism [Cavalier-Smith, 1985; Li and Graur, 1991].

There are many distinctions between introns and non-genic DNA. Introns provide vi-
tal functions for the organism and perhaps even for evolution itself [Mattick, 1994; Li and
Graur, 1991]. Non-genic DNA apparently contributes little to an organism’s fitness, though
it may serve some structural role or provide an environment for genetic parasites [Li and
Graur, 1991]. The origins of both non-genic DNA and introns are unclear. However, or-
ganisms with selective pressure toward streamlined genomes, such as bacteria and viruses,
have little non-genic DNA and few, if any, introns. In some cases, such as � X-174 (a virus
which lives in E. coli) [Kornberg, 1982] or some genes coding for human mitochondrial
RNA [Anderson et al., 1981], a single sequence of DNA codes simultaneously for more
than one protein—a kind of natural data compression.

In GP fitness neutral sections of code are commonly referred to as introns, whereas
sections of code which effect fitness are called exons. There are several problems with the
intron/exon distinction as it is used in GP. First, these terms are often used without precise
definitions. The formal definitions which have been published are not always compatible.
Perhaps more importantly the terms intron and exon have quite different meanings in the
biological community. The lack of a transcription process in typical GP makes it impossible
to reasonably associate biological introns and exons with types of GP code. Thus, the terms
intron and exon can make communication with biologists difficult. Finally, in many cases
dividing GP code into more than two categories is necessary to understand the evolution
of bloat. For these reasons we chose to introduce two entirely new terms: operative and
viable.

Definition 1 A node n in a program’s syntax tree is operative if the removal of the subtree
rooted at that node (and replacing it with a null operation) will change the program’s
output. Conversely a node is inoperative if it is not operative.

Definition 2 A node n in a program’s syntax tree is viable if there exists a subtree such
that replacing the subtree rooted at node n with the new subtree will change the program’s
output on some input. Conversely a node is inviable if it is not viable.

Although we chose to define these terms for tree based genomes, modifying these defi-
nitions to apply to other genomes is not difficult. For example if a linear genome was used
the definition would need to refer to linear subsections of code rather than subtrees.

Notice that with these definitions inviable code is a subset of inoperative code. Thus any
program will have at least as much inoperative code as it has inviable code.
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As an example consider two code fragments:

X+(1-(4-3)) and
Y+(0*Z)

where X,Y, and Z are additional sections of code. In each fragment the underlined section
contributes nothing and could be removed without affecting the output or fitness of the
individual containing this code. Thus, both underlined sections are inoperative. In addition,
assuming there are no side-effects, fragmentZ is inviable since no replacement for fragment
Z will affect performance. While the fragment (1-(4-3)) is viable, because changes to
this fragment could change performance. Quite often inviable code is code which does not
get executed, such as code following an if(false) statement.

In roughly equivalent theories, [Nordin and Banzhaf, 1995], [McPhee and Miller, 1995]
and [Blickle and Thiele, 1994] have argued that code growth occurs to protect programs
against the destructive effects of crossover and similar operators. Clearly any operator
which only affects inviable code cannot be destructive (or beneficial) and any operator af-
fecting only inoperative code is less likely to be destructive because the code which is being
changed doesn’t contribute to the fitness. Thus individuals which contain large amounts of
inviable or inoperative code and relatively small amounts of operative code are less likely
to have damaged offspring, and therefore enjoy an evolutionary advantage. Inviable and in-
operative code have a protective role against the effects of crossover and similar operators.

[McPhee and Miller, 1995] argue more generally that evolution favors programs which
replicate with semantic accuracy, i.e. that there is a Replication Accuracy Force acting on
the population. This is a general force which should respond to replication inaccuracies
caused by crossover, mutation or any other primarily destructive operator. This force also
favors maximizing total code while minimizing viable code.

Although code bloat apparently serves a protective function, this does not mean that it
is necessarily beneficial in producing improved solutions. These hypotheses suggest that
code bloat performs a purely conservative role. Code bloat preserves existing solutions, but
makes it difficult to modify, and thereby improve upon, those solutions. Thus code bloat is
a serious problem for sustained learning.

It has also been argued that code bloat could act as a storehouse for subroutines which
may be used later [Angeline, 1994]. However, there is no clear experimental evidence that
this generally occurs.

Several techniques for limiting code bloat have been proposed. One of the first and
most widely used is to set a fixed limit on the size or depth of the programs[Koza, 1992].
Programs exceeding the limit are discarded and a parent is kept instead. This technique is
effective at limiting code bloat but has certain drawbacks. Some prior domain knowledge is
necessary to choose a reasonable limit and code bloat occurs fairly rapidly until the average
program approaches the limit. Recent research also suggests that a limit can interfere with
searches once the average program size approaches the size limit [Gathercole and Ross,
1996; Langdon and Poli, 1997a].
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Parsimony pressure attempts to use the evolutionary process to evolve both suitable
and small solutions. A term is added to the fitness function which penalizes larger pro-
grams, thereby encouraging the evolution of smaller solutions. Commonly the penalty is
a simple linear function of the solution size, but other more, and less, subtle approaches
have been used. Of these, variable penalty functions, which respond to the fitness and
size of individuals within the population appear to be the most robust [Iba et al., 1994;
Zhang and Mühlenbein, 1995; Blickle, 1996]. Other studies have shown a degradation in
performance when parsimony pressure is used [Koza, 1992; Nordin and Banzhaf, 1995].
Recent research suggests that the effect of parsimony pressure depends on the magnitude
of the parsimony function relative to the size-fitness distribution of the population[Soule,
1998]. Populations with a stronger correlation between high fitness and large size are less
likely to be negatively affected by parsimony pressure. When the correlation is low, smaller
programs are heavily favored and the population tends towards minimal individuals, which
seriously hampers further exploration.

Another approach to reducing code bloat has been to modify the basic operators. Notable
operator modification approaches include varying the rate of crossover (and mutation) to
counter the evolutionary pressure towards protective code [Rosca, 1997], varying the selec-
tion probability of crossover points by using explicitly defined introns[Nordin et al., 1996],
and negating destructive crossover events (a form of hill climbing) [Soule and Foster, 1997;
O’Reilly and Oppacher, 1995; Hooper et al., 1997]. Each of these approaches has the goal
of reducing the evolutionary importance of inviable and inoperative code. Although each
has shown some promise none of them appear to be universally successful.

8.3 Program Search Spaces

The problem of automatically producing programs can be thought of as the problem of
searching for and finding a suitable program in the space of all possible programs. The
first requirement is that we choose a search space which does contain suitable programs.
In GP this means that the function and terminal sets are suffiently powerful to be able to
express a solution. We must also ensure that limits on the size of programs don’t exclude
solutions. Given finite terminal and function sets and a bound on the size or depth of
programs we have a finite number of possible programs, i.e. a finite search space. However
even in simple GP problems, the size of the search spaces are huge, typically growing
approximately exponentially with the size of the largest program allowed.

Like the number of different programs of a given size, the number of different tree shapes
of a given size also grows approximately exponentially with size. For binary trees of
length � (i.e. comprised of ����� internal nodes and �����
	����� external nodes or leafs) the
shortest or most compact tree has a depth of ��������������	�� and the tallest ������	������ . The
most popular height lies between these extremes (for reasonable programs sizes it is near
���! "�# , while the average height converges slowly to �%$ &'���)(*	�����+�-,.����/1023� as � increases
[Flajolet and Oldyzko, 1982, page 200]) and almost all programs have a maximum height
near this peak (see Figure 8.9).
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It is often assumed that we know almost nothing about the distribution of solutions within
these vast search spaces, that they are neither continuous nor differentiable and so classi-
cal search techniques will be incapable of solving our problems and so we have to use
stochastic search techniques, such as genetic programming. However random sampling
of a range of simple GP benchmark problems suggests a common features of program
search spaces is that over a wide range of program lengths the distribution of fitness does
not vary greatly with program length [Langdon and Poli, 1998d; Langdon and Poli, 1998a;
Langdon and Poli, 1998e]. These results suggest in general longer programs are on average
the same fitness as shorter ones. I.e. there is no intrinsic advantage in searching programs
longer than some problem dependent threshold. Of course, in general, we will not know in
advance where the threshold is. Also it may be that some search techniques perform better
with longer programs, perhaps because together they encourage the formation of smoother
more correlated or easier to search fitness landscapes [Poli and Langdon, 1998a]. How-
ever in practice searching at longer lengths is liable to be more expensive both in terms of
memory and also time (since commonly the CPU time to perform each fitness evaluation
rises in proportion to program size). Given this why should progressive search techniques
which decide where to explore next based on knowledge gained so far, such as genetic
programming, encounter bloat?

8.4 Bloat Inherent in Variable Length Representations

In general with variable length discrete representations there are multiple ways of repre-
senting a given behaviour. If the evaluation function is static and concerned only with
the quality of each trial solution and not with its representation then all these represen-
tations have equal worth. If the search strategy were unbiased, each of these would be
equally likely to be found. In general there are many more long ways to represent a spe-
cific behaviour than short representations of the same behaviour. For example in the sextic
polynomial problem, Section 8.5, there are about 3,500 times as many high scoring pro-
grams of length � �*� as there are with the same score and a length of � . Thus, assuming
an unbiased search strategy, we would expect a predominance of long representations.

Practical search techniques are biased. There are two common forms of bias when using
variable length representations. Firstly search techniques often commence with simple
(i.e. short) representations, i.e. they have an in built bias in favour of short representations.
Secondly they have a bias in favour of continuing the search from previously discovered
high fitness representations and retaining them as points for future search. I.e. there is a
bias in favour of representations that do at least as well as their initiating point(s).

On problems of interest, finding improved solutions is relatively easy initially but be-
comes increasingly more difficult. In these circumstances, especially with a discrete fit-
ness function, there is little chance of finding a representation that does better than the
representation(s) from which it was created. (Cf. “death of crossover” [Langdon, 1998a,
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page 206]). So the selection bias favours representations which have the same fitness as
those from which they were created.

For example in our experiments with the artificial ant problem by the end of 50 runs
crossover made no improvements at all in any of them [Langdon and Poli, 1997b, Figure 9].
Similarly in continuous problems most crossovers do not improve programs. Figure 8.2
shows while about 50% of crossovers in the sextic polynomial problem (see Section 8.5)
did not change the measured fitness of the programs or changed it by less than 	����
	 , in
the last generation of the run only 3% of crossovers produced children fitter than their first
parent.

In general the easiest way to create one representation from another and retain the same
fitness is for the new representation to represent identical behaviour. Thus, in the absence
of improved solutions, the search may become a random search for new representations of
the best solution found so far. As we said above, there are many more long representations
than short ones for the same solution, so such a random search (other things being equal)
will find more long representations than short ones. In Section 8.7 we show another aspect
of this random expansion towards the parts of the search space containing most programs;
the search drifts towards the most popular program shapes.
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Bloat can be likened to diffusion where there is a macroscopic change which appears to
be directed but it is in fact the effect of many microscopic random fluctuations which cause
the physical system to move from an initial highly unlikely (low entropy) state to a more
likely one (high entropy). In the same way the initial GP population is usually constrained
to be in one of a relatively small number of states (as the programs in it start relatively
short). Over time the effect of the many random changes made by crossover, mutation and
selection cause the population to evolve towards the part of the search space containing the
most programs simply because this means there are many more states the population can be
in. I.e. if we choose a state uniformly at random is likely to be one in which the population
contains long programs as there are many more long programs than short ones. The law
of exponential growth in number of programs gives a very strong bloat pressure which is
difficult for random fluctuations produced by mutation and crossover to ignore. However
in Section 8.5.3 we describe a mutation operator which does have much reduced bloating
characteristics.

While most previous attempts to explain bloat during evolution have concentrated upon
inoperative or inviable code in genetic programming the above explanation is more general
in two important ways. Firstly it predicts code growth is general and is expected in all un-
biased search techniques with variable length representations. In Section 8.5 we investigate
bloat in continuous domain non-GP search. [Langdon, 1998b] showed bloat in a discrete
problem under a range of non-GP search techniques. Secondly it is able to explain the
evolution of program shapes as well as sizes. That is not to say the other approaches are
wrong, only that we suggest they are less general.

Like physical entropy, this explanation only says the direction in which change will oc-
cur but nothing about the speed of the change. Price’s Covariance and Selection Theorem
[Price, 1970] from population genetics can be applied to GP populations [Langdon, 1998a;
Langdon and Poli, 1997a]. In particular it can be applied to program size. Provided the
genetic operators are random and unbiased, given the covariance between program’s length
and the number of children they have (which is given by their fitness and the selection tech-
nique), Price’s theorem says what the expected mean change in length will be between this
generation and the next. The increase is proportional to the covariance. So the greater the
correlation between size and fitness the faster bloat will be. In practice most of the covari-
ance, and hence most of the bloat, is due not to long children being better than their parents
but due relatively short ones being worse than average. (See, for example, Section 8.5.4).

Essentially Price’s theorem gives a quantitative measurement of the way genetic algo-
rithms (GAs) search. If some aspect of the genetic material is positively correlated with
fitness then, other things being equal, the next generation’s population will on average con-
tain more of it. If it is negative, then the GA will tend to reduce it in the next generation.
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Table 8.1
GP Parameters for the Sextic Polynomial Problem

Objective: Find a program that produces the given value of the sextic polynomial � ����� � ��� �
	 as
its output when given the value of the one independent variable, � , as input

Terminal set: � and 250 floating point constants chosen at random from 2001 numbers between -1.000
and +1.000

Functions set:
� ����

(protected division)
Fitness cases: 50 random values of � from the range -1 . . . 1
Fitness: The mean, over the 50 fitness cases, of the absolute value of the difference between the

value returned by the program and � � ��� � � � � 	 .
Hits: The number of fitness cases (between 0 and 50) for which the error is less than 0.01
Selection: Tournament group size of 7, non-elitist, generational
Wrapper: none
Population Size: 4000
Max program: 8000 program nodes (however no run was effected by this limit)
Initial population: Created using “ramped half-and-half” with a maximum depth of 6 (no uniqueness

requirement)
Parameters: 90% one child crossover, no mutation. 90% of crossover points selected at functions, re-

maining 10% selected uniformly between all nodes.
Termination: Maximum number of generations G = 50

8.5 Sextic Polynomial

In studies of a number of benchmark GP problems which have discrete representations and
simple static fitness functions we tested the predictions of Section 8.4 and show they es-
sentially hold (see [Langdon and Poli, 1997b; Langdon and Poli, 1998b; Langdon, 1998b]
and Section 8.6). In this and the following sections we extend this to a continuous problem
which uses floating point operations and has a continuous fitness function, i.e. it has an
effectively unlimited number of fitness value. We use the sextic polynomial � " ( ��� 2 ��� �
regression problem [Koza, 1994, pages 110–122]. The fitness of each program is given by
its error averaged over all 50 test cases (as given in Table 8.1). We used two ways to test the
generality of the evolved solutions. Either using 51 test points chosen to lie in the interval
-1 to +1 at random points between the 50 fitness test case points or we used 2001 points
sampling every 0.001 between -1 and +1.

8.5.1 GP Runs

In 46 out of 50 runs bloat occurs (see Figure 8.3). In the remaining 4 runs, the GP popu-
lation remains stuck with the best of generation individual yielding a constant value with
mean error of 0.043511. In these four runs the lengths of programs within the population
converge towards that of the best individual and no bloat occurs. In 45 of the remaining 46
runs there was a progressive improvement in the fitness of the best of generation individ-
ual. In one run the population bloated and there was no improvement in fitness. In some
runs the generalised performance of the best of population individual (calculated from 2001
test points) improves steadily with the measured fitness. In other runs generalised perfor-
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Evolution of population mean program length. 50 GP runs of sextic polynomial problem.

mance varies widely and may be exceedingly poor, even for apparently very fit programs.
Figure 8.4 plots the fitness and generality for three representative runs.

Figure 8.5 shows the evolution of the behaviour of the best of generation individual in the
first run. This shows the typical behaviour that the best of the initial random population is
a constant. After a few generations typically the GP finds more complex behaviours which
better match the fitness test cases. Later more complex behaviours often “misbehave” be-
tween points where the fitness test cases test the programs behaviour. In fact the behaviour
of the best of generation individual (including its misbehaviour) is remarkably stable. Note
this is the behaviour of single individuals not an average over the whole population. We
might expect more stability from an average. This stability stresses GP is an evolutionary
process, making progressive improvements on what it has already been learnt.

8.5.2 Non GP Search Strategies

In Section 8.4 we predicted bloat in non-GP search. In this section we repeat experiments
conducted on discrete benchmark problems but on a continuous domain problem using four
non-GP search techniques.
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In Simulated Annealing (SA) an initial random individual is created using the ramped
“half and half” method. Each new trial program is created using the mutation operator. It
is then evaluated. If its score is better or the same as that of the current one, it replaces the
current one. If it is worse then its chance of replacing the current one is ������� (�� fitness ��� � .
Where � is the current temperature. In these experiments the temperature falls exponen-
tially from 0.1 to 	 � �
	 after 200,000 trial programs have been created. Whichever program
does not become the current one is discarded. A run is deemed successful if at any point it
finds a program which scores 50 hits.

Hill climbing (HC) can be thought of as simulated annealing with a zero temperature,
i.e. a worse program is never accepted. The runs do not restart (except in the sense that
mutation at the root replaces the whole program with a new randomly created one). Strict
hill climbing (SHC) is like normal hill climbing except the new program must be better
than the current one in order to replace it. Finally population search is a mutation only
genetic algorithm with 91% of each generation being created by performing one mutation
on a parent in the previous generation and 9% being direct copies of parents in the previous
generation. Tournaments of 7 were used to select parents in both cases.
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The parameters used are substantially the same as were used in [Langdon, 1998b] on
the artificial ant problem. The mutation runs described in these sections use the same
parameters as in the GP runs in Section 8.5.1, however a smaller population of 500 rather
than 4,000 was used. Also the maximum program size was 2,000 rather than 8,000, see
Table 8.2.

Table 8.2
Parameters used on the Sextic Polynomial mutation runs.

Objective etc: as Table 8.1
Selection: SA, HC, SHC or Tournament group size of 7, non-elitist, generational
Population Size: 1 or 500
Max program size: 2,000
Initial trial: Created using ramped “half and half” with a maximum depth of 6
Parameters: Initial temp 0.1, final ��� ��� exponential cooling; max inserted mutation subtree 30; muta-

tion points chosen uniformly
Termination: Maximum number of trials 200,000
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8.5.3 New Tree Mutation Operators

For these experiments it is important to be clear about the causes of bloat and so it is
more important that the mutation operator should not introduce either a parsimony bias or
a tendency to increase program size. Accordingly we introduced a new mutation operator
which generates random trees with a specific distribution of sizes, choosing this distribution
so on average the new subtree is the same size as the one it replaces. (The algorithm used to
create random trees is substantially the same as that given in [Langdon, 1997, Appendix A].
C++ code can be found at ftp://ftp.cs.bham.ac.uk/pub/authors/
W.B.Langdon/gp-code/rand tree.cc).

In the first method the size of the replacement subtree is chosen uniformly in the range
��� � ��� (where � is the size of the subtree selected to be deleted). We refer to this as 50%–
150% fair mutation. Thus on average the new subtree is the same size as the subtree it is to
replace. Should it be impossible to generate a tree of the chosen size or � � � ��� exceeds 30
a new mutation point is selected and another attempt to create a new random tree is made.
This loop continues until a successful mutation has been performed. Note 50%–150% fair
mutation samples programs near their parent uniformly according to their length. Thus
neighbouring programs which have the same length as many other neighbouring programs
are less likely to be sampled than neighbouring programs which have the same length
as few others. As there are many more long programs than short ones each long one is
relatively less likely to be sampled compared to a shorter one. That is the 50%–150% size
distribution has an implicit parsimony bias.

In the second method the size of the replacement subtree is the size of a second subtree
chosen at random within the same individual. We call this subtree fair mutation. Since this
uses the same mechanism as that used to select the subtree to replace, the new subtree is
on average the same size as the subtree it replaces. It should always be possible to generate
a tree of the chosen size, however a limit of 30 was imposed to keep certain tables within
reasonable bounds.

8.5.3.1 50–150% Fair Mutation Runs
In simulated annealing runs at initial high temperatures fitness and length vary rapidly but
as the temperature falls the variability of program fitness also falls. In contrast the size
of the current program continues to vary rapidly as it appears to execute a random walk.
However on average program size shows little variation after an initial rise.

In runs using 50–150% mutation with both hill climbing and strict hill climbing there
is very little variation in either length or fitness. Indeed 50–150% mutation hill climbing
finds it difficult to progress past the best constant value. Few runs are successful but bloat
does not happen.

When 50–150% mutation is used in a population it is easier to pass the false peak as-
sociated with returning constant value and more runs are successful (albeit only 6 out of
50, see Table 8.3). There is limited growth in program size in the first few generations (as-
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Table 8.3
Sextic Polynomial and Artificial Ant: Means at the end of 50 runs. The number of Sextic Polynomial runs which
found a program which scored 50 hits, the number where a best of generation individual scored 2001 hits on
the generalisation test and the mean length of programs in the final population. The number of Ant runs where
a program was able to complete the Santa Fe trail (89 hits) within 600 time steps and the the mean length of
programs in the final population.

Sextic Polynomial Artificial Ant, 25,000 trials
50%–150% Subtree-sized 50%–150% Subtree-sized

50 hits 2001 Size 50 hits 2001 Size 89 Size 89 Size

Simulated Annealing 6 0 217 32 4 1347 4 95 2 1186
Hill Climbing 1 1 21 15 0 1838 3 41 2 1074
Strict Hill Climbing 2 1 22 16 0 1517 8 32 3 78
Population 6 2 32 28 0 553 12 40 6 127
Population after ��� � and ��� � trials 19 287 6 329

sociated with improvement in the population fitness) followed by a long period where the
population size average size is almost constant. As in the artificial ant problem[Langdon,
1998b], very slight growth in the programs within the population can be observed.

8.5.3.2 Subtree Fair Mutation Runs
At the start of simulated annealing runs while the temperature is relatively high the fit-
ness of the current program fluctuates rapidly. As does its size. If we look at the average
behaviour less fluctuation is seen, with mean error falling to a low value but on average
programs grow rapidly to about half the available space (2,000 nodes) see Table 8.3. On
average this slows further growths. However there is still considerable fluctuation in pro-
gram size in individual runs.

Similar behaviour is seen when using hill climbing or strict hill climbing. Subtree Sized
strict hill climbing runs either bloat very rapidly or get trapped at very small (3 or 5 node)
programs. In ten of 50 runs programs of fitness 0.043511 were rapidly found but no im-
provements were found and no bloat occurred. While initially the same happens in the hill
climbing runs, eventually in all 50 runs the hill climber was able to move past 0.043511
and rapid bloat follows. With both search techniques average program length grows rapidly
towards the maximum size allowed.

When subtree sized fair mutation is used in a population there is a steady, almost linear,
increase in program length. This is in contrast to the initial fall and subsequent rapid non-
linear growth when using crossover (albeit with a different population size, see Figure 8.3).

The right hand side of Table 8.3 summarises our results when using the same mutation
operators and search strategies on the artificial ant problem[Langdon, 1998b]. Comparing
program sizes for the sextic polynomial and the artificial ant we essentially see the same
bloating characteristics (except in one case).

In the sextic polynomial problem using subtree sized fair mutation and strict hill climbing
bloat occurs whereas it did not in the artificial ant problem. We suspect this is simply due to
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the continuous nature of the problem’s fitness function. With gaps between fitness values,
strict hill climbing imposes a barrier protecting the current point on the search. This barrier
is lowered when the fitness function is continuous and any improvement in performance
(no matter how small) can now displace the current program. Thus there is little difference
between hill climbing and strict hill climbing.

Very slow bloat is observed in the sextic polynomial when 50–150% fair mutation is
used in a population, as was bloat on the ant problem. The rate is even slower in the sextic
polynomial at about 0.009 nodes per generation, compared to 0.13. Studying individual
runs indicate the populations converge towards the size of the best individual in the popu-
lation. While the fitness of this program may vary a little from generation to generation it
does not show steady improvement and the search remains trapped, often only marginally
better than the best fitness a constant can achieve. The slower bloat may indicate it is more
difficult for small Sextic Polynomial programs to contain inviable code than it is for small
artificial ant programs.

The difference in the performance of the two mutation operators may indicate 50-150%
mutation is searching programs that are too short. Certainly the shortest solutions found
by the 50 GP runs (at 67 nodes) were bigger than almost all the programs tested by 50-
150% mutation. Unfortunately the low density of solutions means that we have not been
able to explore the search space using random search to plot the density of solutions w.r.t.
length. It would be nice to repeat these experiments using bigger initial programs, i.e. in
the neighbourhood of 67 nodes.

8.5.4 Direct Measurement of Genetic Operators Effects on Performance

In this section we isolate the effect different genetic operators have from other influences
(e.g. selection, noise, population size) by performing all possible variations of each genetic
operation on representative programs and measuring the change in fitness and change in
size. We used the 223 best of generation programs from our 50 GP runs which are between
101 and 201 nodes in length and with a fitness no better than 0.02. We know due to
convergence of the GP populations these and their descendents are responsible for bloat.

8.5.4.1 Self Crossover

A new program was created by crossing over each program with itself at each possible pair
of crossover points As expected most crossovers produce very small changes in both size
and fitness. The effects of self crossover are asymmetric. In almost all cases on average
children which do worse than their parents are smaller than them. While in about half the
cases on average children which have the same fitness as their parent are nearly the same
length, the remainder are on average at least one node longer. In most cases it is possible
for self crossover to find improvements. In all but 16 of 233 cases these improved children
are on average at least one node longer than their parents.
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By considering the sizes of the subtree removed from the parent and the size of that
inserted we can discover the cause of this asymmetry. Figure 8.6 shows the size of the code
removed by self crossover in most cases is on average bigger when the children perform
worse than when either they perform the same or perform better. Figure 8.6 offers clear
evidence of “removal bias” (as discussed in Section 8.6.2). In contrast the size of new
inserted code is not particularly asymmetric.

8.5.4.2 Mutation Operators
As expected 50–150% Fair Mutation is nearly symmetric. In all cases the mean change
in length of worse children is within -0.5 and +0.5. The mean change in length for better
children and children with the same fitness are also almost symmetric.

The affects of subtree sized fair mutation are similar to those of self crossover, especially
w.r.t. the asymmetry of change in fitness and change in size.
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Figure 8.7 shows the proportion of single point changes that increase fitness and those
that make it worse. Initially programs are short but increase as the population evolves,
so a similar plot is obtained if we replace size as the horizontal axis by generations. As
expected initially all high fitness individuals are fragile and over 95% of point mutation
reduce fitness. As programs grow, the chance of a single point mutation reducing fitness
decreases (and the chance of it improving fitness grows). This is entirely as expected and
corresponds to larger programs containing more inviable code. The proportion of worse,
same and better programs produced by self crossover, 50–150% fair mutation and subtree
sized fair mutation are essentially the same as that of point mutation. This indicates the
chance the offspring has a changed behaviour depends mainly on the point in the program
which is changed (particularly whether it is viable or not) rather than how it is changed.
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Figure 8.8
The maze used for the maze navigation problem. Walls are indicated by crosses and the start by the arrow.

Table 8.4
Summary of the maze navigation and even 7 Parity problems

Objective: To navigate a simple maze To find parity of � boolean inputs
Terminal set: forward, back, left, right,

no op,
The � input values

wall ahead, no wall ahead
Function set: if then else, while, prog2 AND, NAND, OR, XOR
Restrictions: Programs were halted after 3000 instruc-

tions to avoid infinite loops
Fitness: Distance traveled from left wall (0 to 18) Number of correct cases (of

�����
�
� � )

Selection: stochastic remainder
Population size: 500
Initial population: random trees
Parameters: 66.6% crossover, no mutation, results averaged over fifty trials
Termination: fixed number of generations
# of Trials: 50

8.6 Bloat in Discrete Problems

8.6.1 Code Bloat as Protection

This series of experiments tests the hypothesis that code bloat is a mechanism to protect
existing solutions from the destructive effects of crossover and similar code modifying
operations. This hypothesis was described in detail in Section 8.2. We began by using a
non-destructive (hill-climbing) version of crossover. In the modified operation the fitness
of an offspring produced with crossover is compared to the fitness of the parent which
supplied the offspring’s root node. The offspring replaces the parent only if the offspring’s
fitness equals or exceeds the parent’s fitness, otherwise the parent remains in the population
and the offspring is discarded. Thus, survival does not depend on avoiding the destructive
effects of crossover and the presumed evolutionary benefit of code bloat is removed.

These experiments were performed on two test problems: a simple maze navigation
problem, and the even 7 parity problem. These two problems are summarized in Table 8.4.
The maze used with the maze navigation problem is shown in Figure 8.8.
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Table 8.5
Code size and fitness at generation 75 with normal or non-destructive crossover.

Size Fitness
Maze navigation Even 7 parity Maze navigation Even 7 parity

Normal Crossover ��� ��� ��� ��� � � ��� ����� ��	 ����� 	 �
Non-destructive Crossover ������� 
 � ������� 
�� ��
�� 
�� ����� � �

Table 8.5 compares the size and performance of programs evolved using normal and
non-destructive crossover. The trials with normal crossover show obvious bloat, in con-
trast with non-destructive crossover the program sizes are much smaller. The use of non-
destructive crossover significantly lowers the amount of code growth observed but there
is no significant change in fitness by the end of the runs. These results agree with other
results using non-destructive crossover [O’Reilly and Oppacher, 1995; Hooper et al., 1997;
Soule and Foster, 1997] This is very strong evidence that code growth occurs, at least par-
tially, as a protective mechanism against the destructive effects of crossover.

If code bloat is a protective, conservative mechanism it should occur to protect against
other, primarily destructive, operations. We tested this possibility by looking at the rates of
code growth when mutation was used in addition to crossover.

If mutation is applied at a constant rate per node then the probability of a mutation
occurring at a given, viable, node is not diminished by the presence of inviable nodes and
there is no evolutionary advantage to excess inviable code. Therefore mutation at a constant
rate per node should not produce code growth.

To test if inviable code is advantageous we used a modified mutation rate. A program
was selected for mutation with probability �� . Once a program was selected for mutation
the program’s size was used to fix the mutation rate so that an average of ��� nodes would
be mutated (i.e. ������������� ���������� �!� ��������"������$#%��&�� ). We refer to this form of mutation
as constant number mutation. Because the average number of mutated nodes is constant, a
larger number of inviable nodes makes it less likely that viable code is affected, presumably
producing an evolutionary advantage in favor of code bloat.

For these experiments � � = 0.3 and � � = 4. It is important to note that a single tree
node is mutated. Thus, this mutation operation does not change the size of the program.
Because code size is not directly affected by the inclusion of mutations any changes in
code bloat must be an evolutionary effect. The rate of crossover was reduced from 0.667
to 0.333. This decreases the total amount of bloat making the effects of mutation on size,
if any, easier to observe. Crossover was applied, with offspring replacing their parents, to
produce a new population. Then mutation was applied to that population.

We also applied mutation at a constant rate per node. The probability of a node mutating
was 0.02. In this case additional bloat cannot protect against the destructive effects of
mutation and additional bloat is not expected.
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Table 8.6
The effects of mutations on code bloat in the maze navigation and even 7 parity problems. The data are averaged
over 50 trials and taken after generation 50.

Size Fitness

Maze navigation Even 7 parity Maze navigation Even 7 parity

No mutations 245.6 240.6 14.3 90.4
Constant Rate 206.4 285.8 10.8 85.9
Constant Number 363.5 420.3 13.0 95.7

Table 8.7
Code size and fitness at generation 75 with normal, non-destructive, or rigorous non-destructive crossover.

Size Fitness
Maze Even 7 parity Maze Even 7 parity

Normal Crossover ��� ��� ��� ��� � � ��� ����� ��	 ����� 	 �
Non-destructive Crossover ������� 
 � ������� 
�� ��
�� 
�� ����� � �
Rigorous Non-destructive Crossover 
���� 
�� 
�
�� � 	 ��
�� � 	 � � � � �

Table 8.6 shows the effects of mutation for the maze navigation and even 7 parity prob-
lems at generation 50. As expected the baseline rate of code bloat is lower for these data
because of the decreased crossover rate. It is clear from these results that constant num-
ber mutations cause a dramatic, significant increase in code bloat whereas constant rate
mutations have a much smaller, more ambiguous effect.

These results make it clear that, at least in part, code bloat is a protective mechanism
against the destructive effects of code modifying operations. When the possibility of dam-
age from an operator is removed, in this case with non-destructive crossover, the amount
of code bloat decreases. When the probability of damage increases, in this case with the
addition of mutation, the amount of code bloat increases. Further, code bloat only increases
if inviable code can play a protective role. When mutations were applied at a constant rate
per node additional viable code could not shield viable code and no additional growth was
observed.

8.6.2 Code bloat due to “Removal Bias”

In this section we suggest “Removal Bias” is a second cause of bloat and conduct dynamic
experiments to show its effects in evolving GP populations. We use two different types
of non-destructive crossover. The first version is identical to the non-destructive crossover
described previously. While the second is a more rigorous form in which an offspring
replaces its parent only if its fitness exceeds its parent’s fitness. Table 8.7 shows rigorous
non-destructive crossover produces significantly less bloat.

The only difference between the two forms of crossover is that the non-rigorous form
allows offspring of equal fitness to be preserved. Thus, the change in code bloat indicates
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that the offspring of equal fitness are, on average, larger than their parents. Larger, equiva-
lent solutions are more plentiful and, thus, easier to find than smaller, equivalent solutions.
This produces a general increases in size even though fitness may not be improving. How-
ever, when rigorous non-destructive crossover is used, the larger equivalent programs are
no longer kept and most of the bloat vanishes.

Equivalently we can view this in terms of the program landscapes of the three crossover
operators. Subtree crossover densely links the search space allowing ready access to the
neighbouring programs. Most of these with similar fitness are bigger than the start point and
bloat follows. With non-destructive crossover all the links to worse programs are replaced
with links back to the current program. This reduces the rate of bloat because the chance
of moving away from the current program is significantly reduced. Strict non-destructive
crossover replaces all the links to programs of the same fitness by links back to self. This
leaves only links to better programs connected but naturally these are few in number and
although they on average lead to bigger programs (because there are more bigger programs)
there is much less chance of any movement at all through the program landscape, so bloat
is dramatically reduced. In continuous fitness problems there are many links to programs
with better fitness (albeit the improvement may be tiny) so we would expect non-destructive
crossover not to be so effective in such cases.

In addition, we can hypothesize a particular mechanism which produces these larger,
equivalent programs. The instructions in a program syntax tree are distributed in such a
way that inviable instructions cluster near the branch tips except in extremely pathological
trees [Soule and Foster, 1998]. This means that removing a relatively small branch during
crossover will decrease the probability of affecting viable code, whereas removing a larger
branch increases the probability of affecting viable code. Thus, removing a small branch is
less likely to be damaging, because any random change to viable code is more likely to be
harmful than to be beneficial. In contrast the size of a replacement branch is not connected
to changes in fitness. Thus, there is an overall bias in favor of offspring which only had a
small branch removed during crossover.

This “removal bias” leads to steady growth. At each generation the offspring which grew
during crossover, because a smaller than average branch was removed, will be favored.

The total average size change during crossover is zero, as every branch removed from one
individual is added to another individual and vice versa. However measurements shows that
offspring which are at least as fit as their parent are on average slightly bigger, exactly as
predicted by the notion of removal bias. Initially the percentage increase is large but within
10–20 generations these transients vanish and steady growth from parent to offspring of the
order of 5% is observed. Although the change in size is relatively small it is compounded
at each generation and, over many generations, it leads to exponential growth. Thus, this
apparently minor bias can have a significant effect on code size.

Removal bias is not limited to crossover. In most versions of subtree mutation a ran-
domly selected subtree is removed and replaced by a randomly generated one. The previ-
ous argument regarding the size of the removed and replacement branches applies equally
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well to this type of subtree mutation. However, removal bias can only occur when the
size of the removed branch and the replacement branch are independent. Thus, with the
50%–150% fair mutation used earlier removal bias is not expected to occur, whereas with
subtree-sized fair mutation removal bias should take place. This agrees with the results
presented previously.

These results make it clear that code bloat has at least two causes. Code bloat occurs as
a protective mechanism which minimizes the destructive affects of code modifying opera-
tions. Code bloat also occurs because the search space is more heavily weighted towards
larger solutions. These solutions are easily found because of the bias in the removal stage
of crossover or subtree mutation.

8.7 Evolution of Program Shapes

In addition to changing size, programs with a tree structured genome can also change shape,
becoming bushier or sparser as they evolve. In this section we consider the size and depth
of the trees. While the density of trees affects the size of changes made by subtree crossover
and many mutation operators [Rosca, 1997; Soule and Foster, 1997] our experiments show
bloating populations evolve towards shapes that are of intermediate density. As Figure 8.9
shows this can be explained as simple random drift towards the most popular program
shapes. In the case of three radically different problems the populations evolve in very
similar ways. We suggest this is because all three contain only binary functions and so
while the number of different programs in the three cases are very different, the location
of the most common shape is the same. For problems with functions with more than two
arguments or mixtures of numbers of arguments the exact distribution of depth v. size in
the search space will be different but will have the same general characteristics.

Experiments where maze navigation populations were initialised as either all full trees or
as all minimal trees of the same size (31 nodes) show in both cases the population evolves
away from full trees or minimal trees towards the most common tree shape. However they
don’t appear to converge (within 75 generations) to the peak, i.e. most common, tree shape.
This may be because, as the 5% and 95% lines in Figure 8.9 show, there is a wide spread
of probable sizes around the peak.

While we have not yet completed a mathematical analysis of the rate of tree growth
with crossover between random trees, such analysis may be tractable. Figure 8.10 gives
a strong indication that the average depth of binary trees in a population grows linearly at
about one level per generation. Using the relationships between size and depth for random
binary trees given in Section 8.3, this corresponds to growth in size of ,.� generations /  " �
for reasonable size programs rising to a limit ,.� generations

� � for programs of programs of
more than 32,000 nodes. Note this indicates quadratic or sub-quadratic growth rather than
exponential growth. Also the actual program sizes will depend upon their depth when the
linear growth begins and so will be problem dependent.
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This analysis and these data only looked at tree based genomes. It is clear that shape
considerations will not apply to linear genomes. However, it is possible that the linear
distribution of viable and inviable nodes are subject to some similar considerations. For
example, a very even distribution of viable nodes in a linear genome may make it more
likely that at least a few viable nodes will be affected by most operations. In which case
an even distribution of viable nodes is unlikely to be favored evolutionarily. More complex
genomes, such as graph structures, do have shapes and it seems likely that they are also
subject to the evolutionary pressures discussed here.

8.8 Discussion

As programs become longer it becomes easier to find neighbouring programs with the
same performance. Indeed in our continuous problem it became easier to find neighbours
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Figure 8.10
Evolution of program tree depth for the maze navigation, even parity, and sextic polynomial problems. Means of
50 GP runs on each problem. Note apparently linear growth in tree depth.

of slightly better fitness. I.e. the fitness landscape becomes smoother for long programs.
Alternatively we may view this as it becomes more difficult to make large moves as pro-
grams get bigger. Figure 8.5 shows GP is an evolutionary process with stable populations
evolving only gradually. From an optimisation point of view this is of course very vexing
since it means the stable GP population is not learning. This problem that evolution isn’t
an optimisation process has been faced before in Genetic Algorithms [De Jong, 1992].

The exponential growth in the number of programs is a very strong driving factor. It
may be the cause of bloat even if the fitness function changes rapidly[Langdon and Poli,
1998c]. If we conduct the reverse experiment to Section 8.6 and instead of rewarding
programs with the same fitness we penalise them we may still get bloat[Langdon and Poli,
1998c]. Effectively instead of replacing links to worse programs with links back to the
current point we remove links to programs of equal fitness. This increases the chance of
moving to either better or worse programs but there are still remain overwhelmingly more
links to longer programs. So the population still bloats even though inviable code would
appear to be a liability.
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In Section 8.5.4.2 we showed 50–150% fair mutation removes the large correlation be-
tween offspring size and change in fitness seen in other genetic operators. This indicates
that by carefully controlling the size of the new code we can avoid “removal bias” as a
cause of bloat.

In these experiments it appears that there is faster bloat with subtree crossover than com-
mon mutation operators firstly because it does not have an implicit size bias and secondly
because it allows larger size changes in a single operation. We can also speculate that ran-
dom code generated by mutation is less likely to contain inviable code than code swapped
by crossover. This potential cause of bloat, if it exists, would be specific to crossover.

8.9 Conclusions

Code growth is a general phenomenon of variable length representations. It is not just a
feature of GP. While it is not possible to show it occurs in every case, in Section 8.4 we
have argued it is can be expected where there isn’t a parsimony bias and we have shown
here and elsewhere [Langdon, 1998b] that code growth happens in a variety of popular
stochastic search techniques on a number of problems.

Code bloat is such an insidious process because in variable length representations there
are simply more longer programs than short ones. It appears to be common for the pro-
portion of programs of a given fitness to be more-or-less independent of program size. In
the absence of length bias, the effect of fitness selection on the neighbourhoods of common
genetic operators is to prefer programs which act like their parents but exponentially more
of these are long than are short. Therefore code growth can be explained as the population
evolving in a random diffusive way towards the part of the search space where most of the
programs are to be found. Another aspect of this is the shape of trees within the population
also evolves towards the more common shapes.

Our research shows that code bloat arises in at least two separate points in the evolution-
ary process.

1. The mechanics of crossover and subtree mutation typically involve the removal and
replacement of a subtree. Often comparatively small changes are more likely not to reduce
performance (meaning successful offspring differ little from their primary parent). If the
size of the inserted code is independent of that removed this means the added code in
successful children is on average bigger than that removed. Thus offspring are more likely
to maintain their parent’s fitness if the net effect of crossover or subtree mutation is to
increase their size. We have called this removal bias.

2. It appears to be common that larger programs are on average more likely to produce
offspring which retain their parents fitness and thus are more likely to survive. Thus being
larger is an evolutionary benefit because a larger program is more likely to have equally fit
offspring. This evolutionary benefit arises because the extra code in a larger program has
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a protective effect. This makes it less likely that the program’s offspring will be damaged
during crossover or mutation, regardless of whether the offspring increased or decreased in
size.

We have shown in one problem that the proportions of worse, better and unchanged
programs are similar for a range of genetic operators. This is consistent with the view
that the primary reason for offspring to behave as their parent is that their parent contained
inviable code which makes no difference to the program when it is modified. We also show
the proportion of inviable code grows with parent size.

In the sextic polynomial problem these proportions are much the same as those of ran-
domly chosen programs of similar fitness suggesting similar behaviour may be expected in
large parts of the search space. The implication of this is GP is mainly sampling “typical”
programs. We of course want it to find solutions, i.e. to sample extraordinary programs.

We have proposed a number of new genetic operators. Two of these show promise in
controlling bloat. 50–150% fair mutation is carefully constructed to avoid bloat due to the
exponential nature of tree search spaces. In discrete problems, non-destructive crossover
may limit code growth due to the evolutionary advantage of inviable code.

8.10 Future Work

The success of 50-150% fair mutation at controlling bloat suggests it is worth investigating
size fair crossover operators. Such new operators might not only control the size of the
replacement subtree but also additional benefits might be found by controlling more tightly
from where in the other parent the replacement subtree is taken. One point [Poli and Lang-
don, 1998b] and uniform crossover [Poli and Langdon, 1998a] and Nordin’s homologous
crossover (Chapter 12) suggest this later step might improve the crossover operator in other
ways as well as controlling bloat.

Acknowledgments

This research was partially funded by the Defence Research Agency in Malvern. I would
like to thank Lee Spector, Paul Vitanyi and Martijn Bot for helpful suggestions and criti-
cism.

Bibliography

Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe,
B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981), “Sequence and organization of the human
mitochondrial genome,” Nature, 290:457–464.

Angeline, P. J. (1994), “Genetic programming and emergent intelligence,” in Advances in Genetic Programming, K. E. Kinnear,
Jr. (Ed.), Chapter 4, pp 75–98, MIT Press.

188



Blickle, T. (1996), “Evolving compact solutions in genetic programming: A case study,” in Parallel Problem Solving From Nature
IV. Proceedings of the International Conference on Evolutionary Computation, H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P.
Schwefel (Eds.), volume 1141 of LNCS, pp 564–573, Berlin, Germany: Springer-Verlag.

Blickle, T. and Thiele, L. (1994), “Genetic programming and redundancy,” in Genetic Algorithms within the Framework of
Evolutionary Computation (Workshop at KI-94, Saarbrücken), J. Hopf (Ed.), pp 33–38, Im Stadtwald, Building 44, D-66123
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