
An Example on Realizing Economics-Driven Software Mining

Rami Bahsoon
School of Computer Science,

 The University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK

r.bahsoon@cs.bham.ac.uk

Wolfgang Emmerich
London Software Systems, Dept. of Computer Science,

University College London, Gower Street, WC1E 6BT, UK
w.emmerich @cs.ucl.ac.uk

Abstract
Economics-driven software mining (EDSM) sifts through the re-
pository data to extract information that could be useful for rea-
soning about not only the technical aspects but also the econom-
ics properties related to the development and/or evolution of
software systems, and in relation to the environments in which
they are procured, developed, evolved and used. The objective is
to provide the analyst with insights into investment decisions re-
lated to the development, maintenance, and evolution of software
systems. EDSM can also assist the analyst in resource planning
and utilization. In this paper, we define EDSM, describe a sce-
nario for realizing EDSM, and provide an example. The example
represents a small-size component-based distributed architecture,
where we mined existing performance repositories to value the
ranges in which a given software architecture can scale to sup-
port likely changes in load. The mining is based on a financial
analogy. The mining step is then complemented with real options
analysis to predict the values resulted from the ranges in which
an architecture can scale under uncertainty, where uncertainty is
attributed to the unpredicted change in load. The example shows
the usefulness of EDSM in informing tradeoffs analysis in soft-
ware design decision making.

Keywords. Economics-Driven Software Engineering, Mining
Software Repositories, Maintenance and Evolution.

1. Introduction

Effort on Mining Software Repositories (MSR) [MSR 1-4]
has revolved around approaches which analyze the data
stored in software repositories to assist in program under-
standing and visualization; predict and gauge the reliability
and quality of software systems; study the evolution of
software systems through discovering patterns of change
and refactorings; modeling defects and their repair; and
understand the origins of code cloning and design changes.
Contributions have also included case studies showing how
data can be extracted from software repositories to improve
software design and reuse. The overall goal is utilize the
mined data for predicting and planning various aspects of
software projects. Meanwhile, software engineers are faced
with general lack of adequate models and methods, which
connect technical engineering concepts to economics and
value creation under given circumstances [EDSR 1-8]. Re-
flecting on the Software Engineering discipline, [Sul99]
note that the problem in the field is that “no serious attempt

is made to characterize the link between structural deci-
sions and value added”. That is, the traditional focus of
software engineering is more on structural and technical
perfection than on value added [EDSR 1-8; Boe00; Erd00].
This argument is applicable to the emerging MSR disci-
pline, where the current focus appears to be purely a tech-
nical endeavor with little attention paid to economics con-
text. For example, software repositories are often mined
and analyzed ignoring the link between technical proper-
ties, economics, and value creation under a given circum-
stances. Such a link may provide the software analyst with
a powerful tool for predicting cost/value information for
developing and evolving dependable software; understand-
ing the economics of refactoring and reengineering; assist-
ing in resource planning and utilization; and understanding
the economics ramification of the change; defects and their
repair; on the system and its design artifacts (e.g., architec-
tures); and informing design trade-offs. The objective is to
utilize data buried in software repositories to provide in-
sights into investment decisions related to the development
and evolution of software systems to assist in resource
planning and utilization. Conversely, mining software re-
positories could be seen as an effort for empirically devel-
oping economics-driven software engineering models and
methods, which could have the promise in addressing the
need indicated by [Sul99; Boe00; EDSR 1-8].

In this paper, we define EDSM, describe a possible sce-
nario for realizing EDSM, and provide an example of use.
Drawing on a case study that adequately represents a me-
dium-size component-based distributed architecture, we
mine existing performance repositories to value the ranges
in which a given software architecture can scale to support
likely changes in load. The mining is based on a financial
analogy, where we utilize the concept of twin asset in fi-
nancial engineering to justify mining relevant repositories.
The mining process in then complemented with real op-
tions analysis for predicting the values resulted from the
ranges in which an architecture can scale under uncertainty,
where uncertainty is attributed to the unpredicted change in
load. As the exact method for analyzing scalability is sub-
ject to debate, we focus the analysis on throughput as a
way for measuring scalability. The provided pointers de-
scribe how EDSM can inform tradeoffs in software design
decision making.

The paper is further structured as follows. Section 2 de-
fines EDSM and discusses a possible scenario to realiza-

tion. Section 3 presents an example on realizing EDSM.
Section 4 briefly outlines related work. Section 5 con-
cludes.

2. Economics (or “Freakonomics”)-Driven
Software Mining?

Economics-driven software mining (EDSM) is based on
the premise that non-trivial, unknown, and valuable infor-
mation lies in an existing data repository, where the goal of
the mining is to sift through the repository data to extract
information that could be useful for reasoning about not
only the technical aspects but also the economics properties
of the development and/or evolution of software systems,
with the environments in which they are procured, devel-
oped, evolved and used [Bah07].

According to [Min99], the process of mining software
repositories encompasses: (i) Data extraction from reposi-
tories; (ii) preprocessing the data for analysis, where the
extracted data has to be formatted (e.g., treating noisy or
missing data), sampled, and often need to be adapted to the
mining algorithm(s). The data is then ready to be mined by
a data mining algorithm(s); (iii) data mining which aims at
extracting patterns of interesting and potentially useful,
unknown, non-trivial information from the data; and (iv)
data interpretation where the patterns identified are inter-
preted into knowledge, which can then be used to support
decision-making. Different mining techniques may be used
to achieve this step.

EDSM poses several challenges. For example,
 How can we decide on which data to be extracted

and be mined?
 Which of the mined data could be revealing to both

the technical and economical properties of a soft-
ware system and relative to the mining objectives?

 What are the mining tools that could be used for
extracting meaningful inputs for the economics-
driven software engineering analysis?

 How can we ensure that the mining objectives have
been satisfied and the obtained knowledge is mean-
ingful inputs to the economics-driven software en-
gineering analysis?

 What are the appropriate analyses tools that could
be used for supporting EDSM?

The challenge, therefore, is to realize EDSM in light of
these questions.

We argue that Freakonomics[Lev05] is appealing for
economics-driven software mining. We believe that mining
software repositories data to reason about both technical
and economical properties in software requires radical,
adhoc, and freak approaches for answering questions and
formulations related to such properties, which classical
software economics and the science of economics may fail

to fully answer. Software economics is still an immature
discipline and unable to fully answer queries on the eco-
nomics of distributed software engineering development,
paradigms, technologies, distributed computations, etc.

Freakonomic[Lev05], a recent best selling economics
book by Levitt and Dubners, and their Freakonomic New
York Times Magazine column address economics and so-
cial issues that are frequently difficult, but not impossible,
to quantify. Freakonomics applies economics concepts in
specific life situations and describes the application
through tales, which are intended to challenge prior beliefs
(i.e., the conventional wisdom). Levitt and Dubners dem-
onstrate that the means of formulating testable hypotheses,
the difficulties involved in gathering useful data and the
utilization of those data are testaments to the discipline and
creative mental processes of true scientific inquiry.
Freakonomics attempts to demonstrate the power of data
mining. Many of their results emerge from Levitt’s analysis
of various databases, and in asking the right questions. In
Freakonomics, the “implicit” process is initiated with
inquiries that may not sound like typical questions for an
economist to ask. For example, why, if gang-affiliated
crack dealers make so much money, so many of them still
live with their mothers? Tales showing relationships
between causes, correlations, effects and their economics
implication are analysed. Interestingly, such questions,
which have no unifying links at the first glance, often result
in new evidence-based discoveries, which may improve our
understanding of the system in question, its relationship to
the environment, and its economics. The logic is a mental
exercise, say, if X relates to Y and Y relates to Z, then X
should relate to Z in a way.

Freakonomics style to mining software repositories is
appealing to the case of software engineering as the analy-
sis may lead to evidenced-based discoveries, which could
be beneficial for understanding the economics of building
long-lived dependable systems and in relation to environ-
ment in which systems are procured, developed, evolved,
and used. Furthermore, the nature of questions asked may
seem to be unrelated, but the questions are merely a step
towards the goal-seeking process for information. For ex-
ample, despite the connection of scalability in software to
value, there is a general lack of value-driven models, which
connect this property to value under given circumstances.
This could be attributed to the fact that the exact method
for measuring scalability is still subject to debate: first,
scalability is frequently thought of in terms of numbers of
users that can be supported on either a single node or col-
lectively on all nodes in a system; it denotes the ability to
accommodate a growing future load. Second, the change in
load demands is critical as it could impact the architecture
at its various levels: structure, topology, and infrastructure.
For example, the challenge of building a scalable system is
to support changes in the allocation of components to hosts
without breaking the architecture of the software system, or
changing the design and code of a component [Emm00].

Third, the change in load could impact other non-functional
requirements such as performance, reliability, and avail-
ability, when the change is poorly accommodated by the
architecture. As a result, this debate is appealing to freak-
style to EDSM as the analysis is hard to understand with
the sole use of classical methodologies to software eco-
nomics; the analysis may need to span different dimensions
of the software system including structural and behavioral.
This is important to account for the economics ramification
of the fluctuation in load on the structure (e.g., maintain-
ability), the behavior (e.g., throughput), and their implica-
tions on the business value (e.g., revenues/ operations han-
dled at a unit time) of given system. For example, through-
put, as scalability measure, is correlated with value. That is,
the more business transactions can be performed by a sys-
tem, the more value is said to be created for the enterprise.
By mining the load and throughput related histories, we
can then compute the associated costs and benefits derived
from executing these transactions over a time period. This
could provide the analyst with an idea of the fluctuation in
value. Consider a scenario where we need to add an extra
distributed node for accommodating the load. By adding an
extra node, it may not necessarily mean that an additional
node may generate extra revenues, but perhaps loses, as the
usage of the node might not necessarily be fully utilized to
outweigh its cost. By enhancing the security of one of the
system’s components, revenue may drop as we may “hurt”
throughput which is tied to performance. This trivial exam-
ple shows that reasoning about value added in software is
complex as it is often correlated with qualities of the soft-
ware system (or so called non-functionalities) and their
dependency. These qualities can be retrospectively ex-
tracted from system usage profiles to reason about the eco-
nomics “performance” of the system so that better utiliza-
tion of recourses may be achieved.

In realizing EDSM, we can utilize what the MSR com-
munity has implemented, tested, and evaluated from tech-
niques, approaches, and extractors when mining software
repositories. However, an effort is still needed on under-
standing how we can sift through the mined data to extract
information that could serve as input for economics models
(e.g. cost/benefit, real options, and utility theory) and tools
to be used. Furthermore, traceability and dependency tech-
niques could be a promising starting point for analysing
queries that are hard to understand in a straightforward
way, where the traces and dependencies can be utilized for
analysis. Traceability and dependency techniques are well
established components in software engineering and their
uses have been demonstrated in many areas including soft-
ware impact analysis, software testing and regression test-
ing, and tracing requirements artefacts to design and/or
back to people. Data visualisation and simulation tools may
complement these approaches to facilitate comprehension
of the causes, effects, and the interconnections of the con-
tributing attributes. These tools can automatically produce

charts containing interesting associations of various charac-
teristics of the software and their economics.

The process of mining software repositories includes (i)
setting a goal for the analysis (i.e. the mining objective);
(ii) selecting the economics models which can perform the
analysis; (iii) developing the mining tools for extracting
and mining information, which could serve as inputs for
the models in (ii); (iv) capturing and interpreting the de-
rived patterns; (v) modeling and computation; and (vi) re-
sult interpretations, analysis and reflection, where the min-
ing step can be complemented by economics analysis to
provide an answer for queries related to the economics of
software artifacts, project utilization, and management. The
queries could range from simple to more Freakonomics style
of queries. For example, let us assume that the query is to
understand the evolution pattern of component X in a given
architecture and the cost trends of evolving X over a time
period. The change history of X could be mined using ex-
isting approaches and can be then complemented by cost
estimation to cast effort of evolving X over a given period
to cost (in £). Note, these models could be adapted from
finance, economics, etc. on condition that the model as-
sumptions are plausible or simplified to serve the software
engineering mining objectives. The drawn analogy, the
model inputs, and the made assumptions can then justify
mining relevant repositories. In some cases, the analysis
tool tends to shape the mining tool. An example is provided
in Section 3, where adopting options analysis from finan-
cial engineering has constrained the way we extract and
mined data.

3. An Example

In this section, we provide an example on realizing EDSM
from our application of real options theory in software en-
gineering [Bah05] and [Bah08] and as a proof of concept.

Setting. Let us consider a three-tier architecture of an
online banking system application, referred to as Duke’s.
This architecture will be built on middleware, such as Java
2 Enterprise Edition (J2EE) and the Common Object Re-
quest Broker Architecture (CORBA). Depending on which
middleware is chosen, different architectures may be in-
duced [DiN99]. Given the choice of either CORBA or
J2EE to induce an architecture, let us assume that the
Duke’s Bank system needs to scale to accommodate the
growing number of clients in one-year time. An architec-
ture which can scale to address such changes in load with
limited resources and shorter time-to-market is a significant
asset for surviving the business, cutting down maintenance
costs, utilizing resources, and creating value. In particular,
the cost and value derived from the flexibility in scaling up
due to inducing the architecture with either CORBA or
J2EE can inform the decision tradeoffs in considering ei-
ther. Hence, the value added can inform the selection of
application server products to induce Duke’s.

Drawing on the Duke’s case, we show how existing
performance benchmark repositories are utilized and
mined to predict the values in which a given software ar-
chitecture induced by a middleware can scale to support
changes in load. In particular, we mined relevant perform-
ance benchmarks to understand how the architecture of the
system may behave once induced with either J2EE or
CORBA with respect to throughput, which is a scalability
and load measure. The mining is based on a financial anal-
ogy, where we “mimic” the concept of twin asset in finan-
cial engineering to justify mining relevant repositories and
for valuing throughput using historical data. The approach
utilizes online data and benchmarks, submitted from differ-
ent practitioners and vendors. The mining process is then
complemented with real options analysis for predicting the
values resulted from the ranges in which an architecture
can scale under uncertainty, where uncertainty is attributed
to the unpredicted change in load. The rationale is that the
combination could provide the architect/analyst with a use-
ful tool for understanding the extent to which the software
system is can accommodate the change in load and starting
from early stages of the software lifecycle, where the sys-
tem need not be implemented.

We now provide an example on realizing EDSM as
highlighted in Section 2. The process comprises (i) setting
the mining objectives, (ii) selecting the economics models
which can serve the analysis of the said objectives; (iii)
developing the mining tools for extracting and mining in-
formation serving the chosen model in (ii), and (iv) analyz-
ing and interpreting the derived patterns.

Setting the mining objectives. Let us assume that we
are given the choice of two middleware M0 and M1 to in-
duce the architecture of a particular system as it is the case
of Duke’s. Let us assume that S0, S1 are the architectures
obtained from inducing M0 and M1 respectively. Say, M1 is
an economical choice, if it adds value to S1 relative to S0.
We attribute the added value to the enhanced flexibility of
S1 over S0 in scaling up the architecture. But the added
value is uncertain, as the demand and the nature of the fu-
ture change and load are uncertain. We set some queries:
(i) How valuable is the flexibility of either alternative, rela-
tive to likely change in scalability, will be in the long-run?
(ii) Which solution is more valuable under uncertainty,
where uncertainty is attributed to the unanticipated changes
in load? (iii) What is the impact of volatility on value crea-
tion under given consideration? (iv) What is the impact of
uncertainty on our choice? (v) Can high uncertainty, due to
the likely future load, make the less favorable technology
more appealing for the decision maker (and vice versa)?

The mining objectives and the queries look to be sparse,
with questions that look to have implicit but not explicit
links. The challenge now is to select the economics
model(s), which could be suited for addressing the said
objectives. It is worth noting that answering these questions
require an economics-driven software engineering models,

which will in turn tune the way data is mined from the re-
positories. As we can see that the value of flexibility under
uncertainty is critical to choice of the economics models.
The data representing uncertainty determines the reposito-
ries that we need to look at.

Selecting economics models, which can serve the
analysis of the said objective(s). We argued that options
theory is well suited to address the above mining objec-
tives. We formulate the objectives as an option problem:

 Real options analysis recognizes that the value of the
capital investment lies not only in the amount of direct
revenues that the investment is expected to generate, but
also in the future opportunities that flexibility creates

[Erd00; Sul99]. An option is an asset that provides its
owner the right without a symmetric obligation to make an
investment decision under given terms for a period of time
into the future ending with an expiration date [Tri95]. If
conditions favorable to investing arise, the owner can exer-
cise the option by investing the exercise price defined by
the option. A call option gives the right to acquire an asset
of uncertain future value for the strike price [Tri95].

ArchOptions[Bah05; Bah04], a real options based
model which values the growth options of an architecture
relative to some future changes, as a way for understanding
the architectural flexibility with respect to changes in re-
quirements. A growth option is a real option to expand with
strategic importance [Tri95] and is common in infrastruc-
ture-based investments, as it is the case with software ar-
chitectures. Since the future changes are generally unan-
ticipated, the value of the growth options lies in the en-
hanced flexibility of the architecture to cope with uncer-
tainty. ArchOptions builds on a simple and intuitive anal-
ogy with Black and Scholes [1973], described in Table 1.

Table 1. Financial/real options/ArchOptions analogy

Option on
stock

Real option on a
project

ArchOptions

Stock Price Value of the
expected cash
flows

value of the “architectural po-
tential” relative to the change
xiVp

Exercise
Price

Investment cost Estimate of the likely cost to
accommodate the change Ceip

Time-to-
expiration

Time until oppor-
tunity disappears

Time indicating the decision to
implement the change (tp)

Volatility Uncertainty of the
project value

“Fluctuation” in the return of
value of V over a specified
period of time (σ)

In the context of ArchOptions, the flexibility of the

middleware induced-architecture in coping with changes in
load has a value in the form of growth options. This value
is strategic in essence, uncertain as the demand on the fu-
ture changes are uncertain, and may not be immediate. The
added value may take the form of (i) accumulated savings

through coping with the change without “breaking” the
architecture, mostly these are changes in non-functional
requirements; (ii) extending the range of services while
leaving the architecture intact; and (iii) the ability to re-
spond to competitive forces and changing market condi-
tions that may pose higher Quality of Service (QoS) re-
quirements, such as the demands for higher availability,
scalability, and so forth.

Choosing a particular middleware to induce the archi-
tecture of the software system can be seen as an investment
to purchase flexibility in the induced software architecture.
The ranges, in which the load changes, influence the
choice. A “wise” selection is seen as an investment to buy
flexibility, which could be valued as future growth options
[Tri96] on the architecture of the software system. These
options enhance the upside potentials of the structure when
the load change; they differ from one middleware to an-
other. That is, S1 is said to be more accommodating to the
change than S0 when S1 holds more growth options than S0.
For a valuation point of view p, we focus the analysis on
the calls of the ArchOptions model for valuing the growth
options, as given in (1) accounting for both the expected
value and exercise cost to accommodate future require-
ments ii, for i ≤ n. Valuing the expectation E of expression
(1) uses the assumptions of Black and Scholes[Bla73] and
detailed in previous work[Bah05; Bah04].

 ∑ i=1…n E [max (xiVp - Ceip, 0)] (1)

The payoff of the constructed call option gives an indi-

cation of how valuable the flexibility of an architecture is,
when enduring some likely changes in requirements. The
selection has to be guided by the expected payoff in (∑

i=1…n E [max (xiVp - Ceip, 0])S1 relative to that of (∑ i=1…n E
[max (xiVp - Ceip, 0])S0. That is, if (- Ie + ∑ i=1…n E [max
(xiVp - Ceip, 0)] S1 > ∑ i=1…n E [max (xiVp - Ceip, 0)] S0) for
some likely changes, then it is worth investing in M1, as the
investment in M1 is likely to generate more growth options
for S1 than for S0 and relative to the p valuation point of
view.
 If (E [max (xkVp - Cepk, 0)])S1=0), then M1 is not likely
to payoff, relative to M0, as the flexibility of the architec-
ture to the change is not likely to add a value for S1 on p, if
the change need to be exercised. Two interpretations might
be possible: (i) the architecture is overly flexible in the
sense that its response to the change(s) has not “pulled” the
options relative to p. This implies that the embedded flexi-
bility (or the resources invested in implementing flexibility-
if any) are wasted and unutilized to reveal the options rela-
tive to the changes and relative to p (ii) the other case is
when the architecture is inflexible relative to the change.
This is when the cost of accommodating the change on S1
is much more than the cumulative expected value of the
architecture responsiveness to the change.

Developing the mining tools for extracting patterns
serving the chosen economics model(s). Let us see how
the choice of options theory and ArchOtions to valuation of
scalability have guided the way relevant repositories are
mined.

Options valuation using Black and Scholes[1973] tech-
niques determine the value of an asset in question in span
of the market value using a correlated twin asset [Tri95].
The twin asset is an asset that has the same risks as the as-
set in question will have when the investment has been
completed [Sch00]. To understand the behavior of the asset
in question, we can use a twin asset, also referred to as a
replicated portfolio. The assumption is that under similar
conditions the twin asset and the asset in question are inter-
changeable for all practical purposes and should be worth
the same.

Throughput, a scalability measure, expresses the
amount of work performed by the system under test during
a unit of time. This criterion is based on the observation
that for a fixed system with a given throughput (e.g., a sin-
gle host), there is an inverse relationship between the re-
sponse time and the number of clients. In other words, the
more clients submitting requests, the longer are the delays.
A well-known throughput metric is the Total Operations
Per Second (TOPS) completed during the measurement
interval, referred to as TOPS [http://www.spec.org/]. TOPS
is composed of the total number of business transactions
completed in the customer domain, added to the total num-
ber of work orders completed in the manufacturing domain,
normalized per second[http://www.spec.org/].

We have mined relevant performance benchmarks, pub-
lished in (http://www.spec.org/) to understand how the
architecture of the system may behave once induced with
either J2EE or CORBA with respect to throughput. An
extract is shown in figure 1. We only use benchmarks,
which are close to the case at hand. We then normalize the
mined benchmarks for easing the comparison. We appealed
to the use of published benchmarks, for the following rea-
sons:

 The system of the given architecture need not be im-

plemented during the evaluation. Thus, performance
measures may not be available.

 We argue that using published benchmarks mimics the
concept of the twin asset for we are relying on histori-
cal information (though not traded in span of the mar-
ket, but still hold market information) which shows
possible variations in performance in connection to
change in load and relative to the candidate implemen-
tations.

 These benchmarks often hint that the throughput is
dependent on and can be estimated from the middle-
tier “processing power” of the architecture. The advan-
tage of this approach is that the published benchmarks
could reveal risks of the operating environment on the
choice. Benchmarks are revealing on the performance

dimension because, for example, if multiple bench-
marks are conducted with a suitable mix of relevant
factors, it may be possible to obtain a set of basic scal-
ability results that can be used for estimating the
throughput of possible configurations of the architec-
ture. Depending on the benchmarking algorithm, the
relevant scalability factors can be, for example, the
number of objects, the number of clients, or the num-
ber of nodes in the system etc. supported in response
to growing load. A major problem in comparing
benchmark results, however, is that different hardware
platforms and configurations (e.g., memory, disk
drives etc) often produce different results making the
comparisons difficult.

 Further, vendors often try many different ways to op-
timize performance, including adding cache memory
and putting cache buffers on disk arrays. This can give
a wide spectrum of worst and best scenarios that could
mimics fluctuation, which is a volatility measure, of
the option approach.

Figure 1. Example of repositories of benchmarks for throughput

Analyzing and interpreting the derived patterns.

Figure 2 shows the likely throughput trend that the J2EE-
induced architecture may exhibit relative to the CORBA-
induced one, upon varying the TOPS and the number of
hosts. For the J2EE-induced architecture, we provide
throughput estimations for two possible implementations:
one with JBoss and the other with WLS. For the CORBA-
induced architecture, we provide estimates upon the use of
JacORB to induce the architecture. Table 2 depicts the up-
per limit of TOPS supported per host for each of WLS,
JBOSS, JacORB induced architectures for 1 to 4 hosts.
Figure 3 shows the likely cost-trend upon inducing the
Duke’s bank architecture with J2EE (using either WLS or
JBOSS) and with CORBA (using JacORB). The likely cost
is plotted against the number of hosts (1 to 4). The cost
refers to the lifecycle cost of the System Under Test (SUT).
The cost includes Application Servers/Containers, Data-
base Servers, network connections, etc. Assuming, for ex-
ample, a five-year lifecycle, cost would include all hard-

ware (purchase price), software including license charges,
and hardware maintenance. For the CORBA version, it
assumed that the investment incurs an upfront cost to the
development of the replication mechanism to support fault-
tolerance and load-balancing services for high load scenar-
ios [Bah05b]. For the J2EE version of WLS, a license cost
is incurred per host.

Throughput of WLS, JBOSS, and JacORB upon
varying the load and hosts

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

1 2 3 4

No of hosts

TO
PS

WLS
JBOSS
JacORB

Figure 2. TOPS/host for each of WLS, JBOSS, JacORB (1- 4
hosts)

In [bah05], we have seen that the structural analysis is
in favor of the J2EE-induced architecture, the throughput
analysis may reveal a different trend upon scaling up each
version. From the throughput valuation point of view, Fig-
ure 2 shows that when the Duke’s architecture will be in-
duced with JBOSS, a J2EE implementation, the system is
likely to be slower than that of the JacORB one. This is
because JBOSS uses reflection [http://www.jboss.org].
This also implies that there are some chances for the
JBOSS-induced architecture to require more hardware for
addressing this deficiency. When inducing the Duke’s ar-
chitecture with WLS, another J2EE implementation, the
system is very likely to be faster than that of the JacORB
implementation. WLS, however, comes with significant
licenses costs; this cost grows with the number of hosts, as
the load increases. Coining the TOPS with their associated
costs, Figure 2, Figure 3 and Table 2, hint that there might
be a case for JacORB in certain throughput range. More-
over, note that once the services for realizing scalability
(i.e., the fault-tolerance and load balancing service) are
implemented, the cost is incurred once and amortized
across the hosts.

Table 2. Upper limit of TOPS/host for WLS, JBOSS, JacORB
 Hosts WLS JBOSS JacORB

1 732.00 400.26 546.80

2 918.36 502.16 686.01

3 1395.44 763.03 1042.39

4 2640.96 1444.08 1972.79

WLS, JBOSS, and JacORB Costs for 1-4 hosts

0.00
50000.00

100000.00
150000.00

200000.00
250000.00
300000.00
350000.00

1 2 3 4

No of hosts

$

WLS

JBOSS

JacORB

Figure 3. Likely cost-trend upon inducing the Duke’s bank architec-
ture with J2EE-(WLS/JBOSS) and with CORBA (JacORB)

Modeling and computation. The case of valuing

throughput is appealing to ArchOptions for the following
major reasons: First, there is cone of uncertainty associated
with the growing load and consequently in the value added
as result of our choice. Moreover, the TOPS are of straight-
forward contribution to value. That is, the more operations
are completed per second, the more value is added to the
enterprise. However, TOPS incur a price upon executing
the operations. The price again is dependent on several
factors such as the number of hosts, the hardware, the li-
cense cost, and any additional costs that are necessary for
making the middleware adaptable to the growing load. In
the context of the Duke’s Bank, the TOPS range is often
uncertain as it is dependent on the customers’ behavior at a
time. The uncertainty in the likely range (i.e., TOPS), the
associated costs for executing the TOPS, and the “fluctua-
tion” in the value added as a result make the case very ap-
pealing to the use of ArchOptions. Below, we estimate the
parameters for computing throughput, Pthro using ArchOp-
tions to address the set mining objectives.

Estimating (CeiPthro). TOPS denotes the Total Operations
completed per Second. For simplicity of explanation, let us
assume that the system of the induced architecture needs to
scale up to support an additional operation per unit-time.
An additional operation buys an architectural potential pay-
ing an exercise price. In terms of throughput, architectural
potential is a performance measure. Hence, what an extra
operation pays, if materializes, is a bandwidth for perform-
ing that operation. Inducing the Duke’s bank with either
J2EE or CORBA provide different bandwidth capabilities
for performing the operation at different prices. If the im-
plementation of either happens to hold embedded growth
options in supporting the extra operation, then the opera-
tion is said to pay an exercise price to buy options on the
architecture. For the exercise price, we use a well-known
normalization factor, which is the price/performance
[http://www.spec.org/jAppServer2005/] (i.e., the lifecycle
cost of the System Under Test (SUT) as configured for the
benchmark divided by the throughput). This is provided in
the data mined. As an example, assuming five-year lifecy-
cle, the cost would include all hardware (purchase price),
software including license charges, and hardware/software
maintenance. If the total price is $5,734,417 and the re-

ported throughput is 105.12 TOPS, then the
price/performance is $54,551.16/TOPS.

Estimating volatility (σPthro). Volatility represents uncer-
tainty attributed to the likely growing of load. For some
computation, we abide to the real options principles in
computing volatility: we use the standard deviation of xiVP-

thros due supporting extra operations for a range of load at a
host (as the range is said to be revealing to the fluctuation
in the value). For other computations, we use modeling
estimates for volatility, representing uncertainty to demon-
strate how volatility influences the choice and as a way to
answer the mining objectives.

Estimating (xiVPthro). For simplicity, we estimate xiVPthro
relevant to the business domain. For every completed on-
line operation, Duke’s would not have to serve a customer
in person at a branch; the Duke’s savings are in the man-
ual-effort for not serving clients at a branch.
 Exercise time (t Pthro) and free risk interest rate(r Pthro). As a
simulation assumption, we set the exercise time to one
year, assuming that the Duke’s Bank needs to accommo-
date the change in one-year time. We set the free risk inter-
est rate to zero (i.e., assuming that the value of money to-
day is the same as that in one year’s time).
 Results interpretations and analysis. Now, We an-
swer and reflect on the mining objectives we set to demon-
strate usefulness of EDSM. We complement the observed
patterns with options computation to inform the problem of
tradeoff analyses and decision making in selecting a candi-
date middleware to induce an architecture, relative to Pthro.
The likely change in load is the major source of uncertainty
that faces Duke’s Bank. To address uncertainty and provide
better insights on value creation, we have appealed to the
use of real options theory. Let us have a close look at the
impact of the volatility parameter, which is an expression
of uncertainty to address the mining objectives.

In options computation, volatility estimates the “cone of
uncertainty” in the future value of the asset, rooted as its
current value and extending over time as a function of
volatility. As volatility increases, total uncertainty around
the benefits also increases. The more TOPS a host is likely
to support, the more likely that the actual benefits to “wan-
der” up and down and deviate from the expected present
value if the load grows. Let us assume that the present load
is in the range of 30- 50 TOPS. Based on the mined data,
30-50 TOPS could be easily addressed by one host using
either M0 (JacORB) or M1 (Jboss or WLS).

For such a low throughput requirements, inducing the
architecture with M0 may appear to be more attractive as
when compared to inducing the architecture with M1 (using
either JBOSS or WLS). This is because M1 incurs license
costs for WLS. Moreover, looking at S1 when induced with
JBOSS, S1 is likely to be in magnitude slower than S0 as
when induced with JacORB due to its use of reflection.
This means that S1 (JBOSS) will support fewer TOPS and
consequently will create less value added per second as

when compared to S0. For such low load, the fault-
tolerance and load-balancing services need not be imple-
mented on S0 [Bah 05]. If options analysis is not used, M0
will be a no-brain choice for inducing the Duke’s Bank
architecture. Though inducing the architecture S1 with M1
(using WLS) appears less attractive than M0 (JacORB), S1
may still carry embedded growth options which will only
materialize if the load grows. If we use a Present Value
(PV), the computation will based on the benefits of sup-
porting the TOPS less their costs (i.e., the computation
does not account for uncertainty). The resulted valuation
will compute the present value as realized and ignore the
growth options. In other words, inducing the architecture
with WLS if undertaken, PV would hint that S1 would de-
stroy value rather than create it. That is, Value S1 = PV.
However, ValueS1 is actually Value S1 = PV + Opt. That is,
M1 carry embedded growth options, Opt. The Opt, if left
unexercised, are ignored by the non-options analysis.
Hence, Value for S1 is then said to be underestimated. As a
result, S0 may look more attractive (Table 3). The Present
Value calculation of Table 3 shows that S1 is the least at-
tractive for this range of load. The computation is based on
the benefits of supporting 100 TOPS less their costs. How-
ever, the computation ignores the growth options on S1 in
supporting additional 632 TOPS using the first host. Simi-
larly, PV systematically undervalues the growth potential
of S1 (JBOSS) and S0 (JacORB) in respectively supporting
300.26 TOPS and 446.26 TOPS. That is, PV ignores the
flexibility value of S1 and S0 in responding to the growing
load at host 1.

Table 3. Illustration PV per second ($) for low throughput (100
TOPS)

10
0

T
O

PS

M
ax

 T
O

PS

C
ei

PT
hr

o

X
iV

PT
hr

o

PV

Value

Ignored

(TOPS)

S1(WLS) 732.00 853.11 12.63 -840.48 -632

S1(JBOSS)
400.26 603.11 12.63 -590.48

 -300.26

S0(JacORB)
546.80

603.11 12.63 -590.48

-446.80

Note, it is a fact that PV does not work well for projects
with future decisions that depend on how uncertainty re-
solves. Though they can be used to evaluate the operational
benefits in a stable environment with well-understood and
measurable costs and benefits, they have little to offer
when capturing additional value due to flexibility under
uncertainty, such as strategic opportunities and the ability
to respond to changing conditions. Using PV, S1, when
induced with WLS, reports negative values upon inducing
the architecture with WLS for this range of load. However,
the situation indicates that these results underestimate the
value of S1, as S1 can better respond to uncertainty, where
the load is likely to grow over 100 TOPS. In Table 4, we
turn to ArchOptions to capture the growth options on S1

and S0. The volatility parameter is an expression of the
range of “benefits” at a host. For S1 (WLS): the benefits
could “wander” from zero (i.e., idle state with no opera-
tions executing at a second) to the benefits derived from
full utilization of capacity (i.e., in the support of 732
TOPS). That is, the volatility of 66% for S1 (WLS) indi-
cates that the benefits of executing the TOPS is in the range
of $0(idle) to $92.42(full utilization) per second on host 1.
Similarly, for S0 (JacORB): the 45% volatility for S0
(JacORB) indicates that the benefits of executing the TOPS
are in the range of $0(idle) to $69.04 (full utilization) per
second on host 1. As for the options on S1(WLS), S1 has
“pulled” the options on one host for this range of load. This
is because we have accounted for the possible fluctuation
in the derived values from supporting the TOPS. Consider-
ing such “fluctuation” provides us with better insights on
the architectural potential of S1 in support of this likely
change in load. Table 4 suggests S1 has reported a value
added of $0.017 on 1 host.

Table 4. Illustration options per second ($) very low throughput
scenario (100 TOPS)

100 TOPS CeiPThro XiVP-

Thro
σPthro Options Actual Value

 (TOPS)

S1(WLS) 853.11 92.42 66% 0.01700 100 + 632

S1(JBOSS) 603.11 50.53 35% 0+ 100 + 300.26

S0(JacORB) 603.11 69.04 49% 0.00001 100 + 446.80

Let us now assume that Duke’s Bank needs to support

more customers. Assume that the load is likely to grow and
be in the range of 600- 686 TOPS (Table 5): S1, when in-
duced with WLS, realizes the change in load by one host.
S0, when induced with JacORB, will need two hosts and
will incur the cost of developing the fault-tolerance and
load-balancing services on the structure. Yet, S1 when in-
duced with JBOSS will require three hosts and will incur
additional hardware costs for completing the 686 TOPS.
Figure 4 shows a scenario for a likely load of 600-686
TOPS for S1 when induced with WLS and for S0 when
induced with JacORB. S1 could be regarded as an invest-
ment with a wide range of possible outcomes. However, S0
is an investment with a relatively narrower range. For S1,
the investment is said to be more volatile. This is because
S1 can support more TOPS/host resulting in a possible
range of values. Relating this to PV, this means that there is
a chance of producing positive PV in the future. Hence, a
real option under this set of outcomes would have value.
As for the S0, the valuation under this scenario is more sta-
ble. This is because S0 can support at most 686 TOPS for
the existing configuration. This means that S0 has no
chance of producing a project with a positive PV beyond
686 TOPS. That is an option using the latter set of out-
comes would have no value.

Figure 4. Impact of volatility on value

Table 5. Options in ($) per second under full utilization of hosts for
load greater than 686 TOPS on S0 and S1 and values added
/second

Fu
ll

U
til

iz
at

io
n

N
o

H
os

ts

C
ei

PT
hr

o

X
iV

PT
hr

o

σ P
th

ro

O
pt

io
ns

Pr

ed
ic

te
d(

$)

A
dd

ed
 V

al
ue

 l

A
ct

ua
l V

al
ue

(T

O
PS

)

S 1
(W

L
S)

1

12
4.

36

23
1.

06

10
.5

2%

10
6.

7

14
.5

2

68
6

TO
PS

+

46
 T

O
PS

S 1
(J

B
O

SS
)

3

19
3.

51

24
0.

85

6.
9%

47
.3

4

24
.3

4

68
6

TO
PS

 +

77
 T

O
PS

S 0
(J

ac
O

R
B

)

2

28
5.

32

21
6.

54

0%

0 0

0
TO

PS

4. Related Work

Mining Software Repositories (MSR) [MSR 1-4] is an in-
creasingly growing community in Software Engineering.
The workshop web [http://msr.uwaterloo.ca/] provides ex-
cellent up-to-date online reference summarizing the contri-
bution to MSRs since the workshop inception. In summary,
contributions have revolved around approaches which ana-
lyze the data stored in software repositories to assist in pro-
gram understanding and visualization; predict and gauge
the reliability and quality of software systems; study the
evolution of software systems through discovering patterns
of change and refactorings; modeling defects and their re-
pair; and understand the origins of code cloning and design
changes. Contributions have also looked at case studies
showing how data can be extracted from software reposito-
ries to improve software design and reuse. Challenges fac-
ing the MSR community like exchanging formats, meta-
models, infrastructure and tools to facilitate the sharing of
extracted data and to encourage reuse and repeatability
have also been proposed, discussed, and debated. Case
studies, on extracting data from repositories of large long
lived projects and suggestions for benchmarks are areas of

interest that the MSR community has reported some results.
These contributions, however, are essentially technical
endeavor with no attention paid to the economics context.
For example, software repositories are often mined and
analyzed ignoring the link between technical properties,
economics, and value creation under a given circum-
stances. Our contribution is novel in addressing this gap.

Meanwhile, another community pioneered by Sullivan,
Notkin, Shaw, and Boehm and their colleagues are inter-
ested in linking technical engineering concepts to econom-
ics and value creation [ESDM1-8]. Up to our knowledge,
no contribution has been reported on EDSM, except for our
recent position statement [Bah07]. Hence, our contribution
bridges the gap between these two communities. It could be
argued however that researchers in software economics
have been mining software repositories since the early days
of the field and mainly for cost and resource justification.
This is true with no doubt. However, effort has not been
focused on the link between technical decisions and value.
Moreover, the type of analysis we’ve addressed is not clas-
sical; it resembles that of Freakonomics in nature.

In [Bah05], we quantified the value of the structure in
scaling to accommodate the change, by looking at the cost
of change and by valuing the savings in maintenance, de-
ployment, and configuration costs to realize the change on
each structure of Duke’s[Bah05]. In [Bah08], we focus the
analyses on the behavioral aspect to analyze scalability,
where we use throughput to measure scalability: despite the
clear connection of scalability to value, there is a general
lack of value-driven models and methods, which connect
this property to value under given circumstances. In this
paper, we define EDSM. We look at how the mining objec-
tives can influence the chosen economics models. We
show how the chosen economics models can then inform
the sources to be mined for answering the set objectives
and informing software architecture-design tradeoffs.

5. Conclusion

We have defined Economics-Driven Software Mining
(EDSM). We have highlighted a scenario for realizing
EDSM. We have presented an example on realizing
EDSM. The example describes how software repositories
could be mined to value the ranges in which a given soft-
ware architecture can scale to support likely changes in
load. The exposed arguments of Section 3 provide an ex-
ample of the invaluable insights that the analyst might
benefit from upon complementing the mined data with
economics computation. These arguments show how
EDSM can be a powerful tool for connecting technical
concerns in software to value creation under given circum-
stances, where “freak” type of analysis is the norm. Such
analysis has the promise to provide the software analyst
with a powerful tool for predicting cost/value information
for developing and evolving dependable software and un-

derstanding the economics ramification of the change on
the system and its design artifacts (e.g., architectures); and
informing design trade-offs. The objective is to provide
insights into investment decisions related to the develop-
ment and evolution of software systems and assisting in
resource planning and utilization. Ongoing work includes
designing an automated infrastructure and tools support
Freak-style to EDSM. Effort includes designing a semi-
automated support for executing the EDSM process, which
we described including deriving interesting patterns, facili-
tating the computation, visualizing the results, assisting in
interpretations, and supporting sensitivity analyses. Inter-
estingly, MSR [1-4] drew the attention to a new challenge
faced by empirical studies: whereas previous studies suf-
fered from lack of data, current studies face challenges
dealing with enormous amounts of freely available data
from easily accessible repositories online such as forums,
code, and bug reports repositories. Though this fact may
have implications on the quality of the mined data and the
resulted analysis under a given circumstance, this could
also hint to opportunities for EDSM, where existing knowl-
edge could provide insights into investment decisions re-
lated to development and evolution of systems. This could,
for example, be based on analogies and similar to the way
we have “mimicked” the concept of twin asset.

6. Acknowledgment
We thank Prof David Rosenblum for some related discussion.

7. References

 [Bah04] Bahsoon, R. and Emmerich, W.: Evaluating Architectural Sta-
bility with Real Options Theory. In: Proc. of the 20th IEEE Int. Conf. on
Software Maintenance (2004)

[Bah05] Bahsoon, R., Emmerich, W., and Macke, J.: Using ArchOptions
to Select Stable Middleware-Induced Architectures. In: IEE Proceedings
Software, Special issue on Relating Requirements to Architectures, IEE
Press 152(4) (2005) 176-186

[Bah07] Bahsoon, R. and Emmerich, W.: Economics-Driven Software
Mining. In: Proc. Of the ICSE 2007 workshop on Economics of Software
and Computation. To appear

[Bah08] Bahsoon, R. and Emmerich, W.: (2008) An Economics-Driven
Approach for Valuing Scalability in Distributed Architectures. In Proc. of
the 7th Working IEEE/IFIP Conference on Software Architecture (WICSA
2008), Vancouver, Canada. IEEE Computer Society Press.

[Bla73] Black, F., and Scholes, M.: The Pricing of Options and Corpo-
rate Liabilities. Journal of Political Economy. U. of Chicago Press (1973)
637-654

[Boe00] Boehm, B., and Sullivan, K. J.: Software Economics: A Road-
map. In: A. Finkelstein (ed.): The Future of Software Engineering. ACM
Press (2000) 320-343

[DiN99] Di Nitto, E., and Rosenblum, D.: Exploiting ADLs to Specify
Architectural Styles Induced by Middleware Infrastructures. In: Proceed-
ings of the 21st Int. Conference on Software Engineering, ACM Press
(1999) 13-22

 [EDSR 1-8] EDSER 1-8: Proceedings of the Workshops on Economics-
Driven Software Engineering Research: In conj. with the 21st through
28th International Conference on Software Engineering (1999 - 2006)

 [Emm00] Emmerich, W.: Software Engineering and Middleware: A
Road Map. In: A. Finkelstein (ed.), Future of Software Engineering, ACM
Press (2000b) 117-129

[Emm02] Emmerich, W.: Distributed Component Technologies and
their Software Engineering Implications. In: Proc. of the 24th Int. Conf. on
Software Engineering, Orlando, Florida, ACM Press (2002) 537-546

[Erd0] Erdogmus, H., Boehm, B., Harrison, W., Reifer, D. J., and Sulli-
van, K. J.: Software Engineering Economics: Background, Current Prac-
tices, and Future Directions.Tutorial Summary. In: Proc. of 24th Int. Conf.
on Software Engineering, ACM Press (2002) 683-684

[Min99] Mining Software Engineering Data: A Survey

[MSR1-4] MSR 1-4: Proceedings of the ICSE Workshops on Mining
Software Repositories, In conjunction with ICSE 2004- 2007.

 [OMG00] Object Management Group: The Common Object Request
Broker: Architecture and Specification, 2.4 ed., OMG (2000)

[Stev05]Steven Levitt and Stephen J. Dubner (2005). Freakonomics: A
Rogue Economist Explores the Hidden Side of Everything. William
Morrow/HarperCollins

[Sul01] Sullivan, K.J., Griswold, W., Cai, Y., and Hallen, B.: The Struc-
ture and Value

[Sul96] Sullivan, K. J.: Software Design: The Options Approach. In: the
Proc. of the Second Int. Software Architecture Workshop. Joint Proc. of
SIGSOFT '96 Workshops, San Francisco, CA (1996) 15–18

 [Sul99] Sullivan, K. J.: Chalasani, P., Jha, S., and Sazawal, V.: Soft-
ware Design as an Investment Activity: A Real Options Perspective. Real
Options and Business Strategy: Applications to Decision-Making. In:
Trigeorgis L. (ed.) Risk Books (1999) 215-260

[Sun] Sun Microsystems Inc.: Duke’s bank application,
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank.html

[Tri95] Trigeorgis, L.: Real options in Capital Investment: Models,
Strategies, and Appications. Praeger Westport, London (1995)

of Modularity in Software Design. In: the Proceedings of the ninth
ESEC/FSE (2001)

