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Abstract 
Economics-driven software mining (EDSM) sifts through the re-
pository data to extract information that could be useful for rea-
soning about not only the technical aspects but also the econom-
ics properties related to the development and/or evolution of 
software systems, and in relation to the environments in which 
they are procured, developed, evolved and used. The objective is 
to provide the analyst with insights into investment decisions re-
lated to the development, maintenance, and evolution of software 
systems. EDSM can also assist the analyst in resource planning 
and utilization.  In this paper, we define EDSM, describe a sce-
nario for realizing EDSM, and provide an example. The example 
represents a small-size component-based distributed architecture, 
where we mined existing performance repositories to value the 
ranges in which a given software architecture can scale to sup-
port likely changes in load. The mining is based on a financial 
analogy. The mining step is then complemented with real options 
analysis to predict the values resulted from the ranges in which 
an architecture can scale under uncertainty, where uncertainty is 
attributed to the unpredicted change in load. The example shows 
the usefulness of EDSM in informing tradeoffs analysis in soft-
ware design decision making. 
 
Keywords. Economics-Driven Software Engineering, Mining 
Software Repositories, Maintenance and Evolution.   
 
 
1. Introduction  
 
Effort on Mining Software Repositories (MSR) [MSR 1-4] 
has revolved around approaches which analyze the data 
stored in software repositories to assist in program under-
standing and visualization; predict and gauge the reliability 
and quality of software systems; study the evolution of 
software systems through discovering patterns of change 
and refactorings; modeling defects and their repair; and 
understand the origins of code cloning and design changes. 
Contributions have also included case studies showing how 
data can be extracted from software repositories to improve 
software design and reuse. The overall goal is utilize the 
mined data for predicting and planning various aspects of 
software projects. Meanwhile, software engineers are faced 
with general lack of adequate models and methods, which 
connect technical engineering concepts to economics and 
value creation under given circumstances [EDSR 1-8]. Re-
flecting on the Software Engineering discipline, [Sul99] 
note that the problem in the field is that “no serious attempt 

is made to characterize the link between structural deci-
sions and value added”.  That is, the traditional focus of 
software engineering is more on structural and technical 
perfection than on value added [EDSR 1-8; Boe00; Erd00]. 
This argument is applicable to the emerging MSR disci-
pline, where the current focus appears to be purely a tech-
nical endeavor with little attention paid to economics con-
text. For example, software repositories are often mined 
and analyzed ignoring the link between technical proper-
ties, economics, and value creation under a given circum-
stances. Such a link may provide the software analyst with 
a powerful tool for predicting cost/value information for 
developing and evolving dependable software; understand-
ing the economics of refactoring and reengineering; assist-
ing in resource planning and utilization; and understanding 
the economics ramification of the change; defects and their 
repair; on the system and its design artifacts (e.g., architec-
tures); and informing design trade-offs. The objective is to 
utilize data buried in software repositories to provide in-
sights into investment decisions related to the development 
and evolution of software systems to assist in resource 
planning and utilization. Conversely, mining software re-
positories could be seen as an effort for empirically devel-
oping economics-driven software engineering models and 
methods, which could have the promise in addressing the 
need indicated by [Sul99; Boe00; EDSR 1-8]. 

In this paper, we define EDSM, describe a possible sce-
nario for realizing EDSM, and provide an example of use. 
Drawing on a case study that adequately represents a me-
dium-size component-based distributed architecture, we  
mine existing performance repositories to value the ranges 
in which a given software architecture can scale to support 
likely changes in load. The mining is based on a financial 
analogy, where we utilize the concept of twin asset in fi-
nancial engineering to justify mining relevant repositories. 
The mining process in then complemented with real op-
tions analysis for predicting the values resulted from the 
ranges in which an architecture can scale under uncertainty, 
where uncertainty is attributed to the unpredicted change in 
load. As the exact method for analyzing scalability is sub-
ject to debate, we focus the analysis on throughput as a 
way for measuring scalability. The provided pointers de-
scribe how EDSM can inform tradeoffs in software design 
decision making. 

The paper is further structured as follows. Section 2 de-
fines EDSM and discusses a possible scenario to realiza-



tion. Section 3 presents an example on realizing EDSM. 
Section 4 briefly outlines related work. Section 5 con-
cludes. 
 
2. Economics (or “Freakonomics”)-Driven 
Software Mining? 
 
Economics-driven software mining (EDSM) is based on 
the premise that non-trivial, unknown, and valuable infor-
mation lies in an existing data repository, where the goal of 
the mining is to sift through the repository data to extract 
information that could be useful for reasoning about not 
only the technical aspects but also the economics properties 
of the development and/or evolution of software systems, 
with the environments in which they are procured, devel-
oped, evolved and used [Bah07]. 

According to [Min99], the process of mining software 
repositories encompasses: (i) Data extraction from reposi-
tories; (ii) preprocessing the data for analysis, where the 
extracted data has to be formatted (e.g., treating noisy or 
missing data), sampled, and often need to be adapted to the 
mining algorithm(s). The data is then ready to be mined by 
a data mining algorithm(s); (iii) data mining which aims at 
extracting patterns of interesting and potentially useful, 
unknown, non-trivial  information from the data; and (iv) 
data interpretation where the patterns identified are inter-
preted into knowledge, which can then be used to support 
decision-making.  Different mining techniques may be used 
to achieve this step.  

EDSM poses several challenges. For example,  
 How can we decide on which data to be extracted 

and be mined?  
 Which of the mined data could be revealing to both 

the technical and economical properties of a soft-
ware system and relative to the mining objectives? 

  What are the mining tools that could be used for 
extracting meaningful inputs for the economics-
driven software engineering analysis?  

 How can we ensure that the mining objectives have 
been satisfied and the obtained knowledge is mean-
ingful inputs to the economics-driven software en-
gineering analysis? 

 What are the appropriate analyses tools that could 
be used for supporting EDSM?  

The challenge, therefore, is to realize EDSM in light of 
these questions.  

We argue that Freakonomics[Lev05] is appealing for 
economics-driven software mining. We believe that mining 
software repositories data to reason about both technical 
and economical properties in software requires radical, 
adhoc, and freak approaches for answering questions and 
formulations related to such properties, which classical 
software economics and the science of economics may fail 

to fully answer. Software economics is still an immature 
discipline and unable to fully answer queries on the eco-
nomics of distributed software engineering development, 
paradigms, technologies, distributed computations, etc.  

Freakonomic[Lev05], a recent best selling economics 
book by Levitt and Dubners, and their Freakonomic New 
York Times Magazine column address economics and so-
cial issues that are frequently difficult, but not impossible, 
to quantify. Freakonomics applies economics concepts in 
specific life situations and describes the application 
through tales, which are intended to challenge prior beliefs 
(i.e., the conventional wisdom). Levitt and Dubners dem-
onstrate that the means of formulating testable hypotheses, 
the difficulties involved in gathering useful data and the 
utilization of those data are testaments to the discipline and 
creative mental processes of true scientific inquiry. 
Freakonomics attempts to demonstrate the power of data 
mining. Many of their results emerge from Levitt’s analysis 
of various databases, and in asking the right questions. In 
Freakonomics, the “implicit” process is initiated with 
inquiries that may not sound like typical questions for an 
economist to ask.  For example, why, if gang-affiliated 
crack dealers make so much money, so many of them still 
live with their mothers?  Tales showing relationships 
between causes, correlations, effects and their economics 
implication are analysed. Interestingly, such questions, 
which have no unifying links at the first glance, often result 
in new evidence-based discoveries, which may improve our 
understanding of the system in question, its relationship to 
the environment, and its economics. The logic is a mental 
exercise, say, if X relates to Y and Y relates to Z, then X 
should relate to Z in a way.  

Freakonomics style to mining software repositories is 
appealing to the case of software engineering as the analy-
sis may lead to evidenced-based discoveries, which could 
be beneficial for understanding the economics of building 
long-lived dependable systems and in relation to environ-
ment in which systems are procured, developed, evolved, 
and used. Furthermore, the nature of questions asked may 
seem to be unrelated, but the questions are merely a step 
towards the goal-seeking process for information. For ex-
ample, despite the connection of scalability in software to 
value, there is a general lack of value-driven models, which 
connect this property to value under given circumstances. 
This could be attributed to the fact that the exact method 
for measuring scalability is still subject to debate: first, 
scalability is frequently thought of in terms of numbers of 
users that can be supported on either a single node or col-
lectively on all nodes in a system; it denotes the ability to 
accommodate a growing future load. Second, the change in 
load demands is critical as it could impact the architecture 
at its various levels: structure, topology, and infrastructure. 
For example, the challenge of building a scalable system is 
to support changes in the allocation of components to hosts 
without breaking the architecture of the software system, or 
changing the design and code of a component [Emm00]. 



Third, the change in load could impact other non-functional 
requirements such as performance, reliability, and avail-
ability, when the change is poorly accommodated by the 
architecture. As a result, this debate is appealing to freak-
style to EDSM as the analysis is hard to understand with 
the sole use of classical methodologies to software eco-
nomics; the analysis may need to span different dimensions 
of the software system including structural and behavioral. 
This is important to account for the economics ramification 
of the fluctuation in load on the structure (e.g., maintain-
ability), the behavior (e.g., throughput), and their implica-
tions on the business value (e.g., revenues/ operations han-
dled at a unit time) of given system. For example, through-
put, as scalability measure, is correlated with value. That is, 
the more business transactions can be performed by a sys-
tem, the more value is said to be created for the enterprise. 
By mining the load and throughput related histories, we 
can then compute the associated costs and benefits derived 
from executing these transactions over a time period. This 
could provide the analyst with an idea of the fluctuation in 
value. Consider a scenario where we need to add an extra 
distributed node for accommodating the load. By adding an 
extra node, it may not necessarily mean that an additional 
node may generate extra revenues, but perhaps loses, as the 
usage of the node might not necessarily be fully utilized to 
outweigh its cost.  By enhancing the security of one of the 
system’s components, revenue may drop as we may “hurt” 
throughput which is tied to performance. This trivial exam-
ple shows that reasoning about value added in software is 
complex as it is often correlated with qualities of the soft-
ware system (or so called non-functionalities) and their 
dependency. These qualities can be retrospectively ex-
tracted from system usage profiles to reason about the eco-
nomics “performance” of the system so that better utiliza-
tion of recourses may be achieved.        

In realizing EDSM, we can utilize what the MSR com-
munity has implemented, tested, and evaluated from tech-
niques, approaches, and extractors when mining software 
repositories. However, an effort is still needed on under-
standing how we can sift through the mined data to extract 
information that could serve as input for economics models 
(e.g. cost/benefit, real options, and utility theory) and tools 
to be used. Furthermore, traceability and dependency tech-
niques could be a promising starting point for analysing 
queries that are hard to understand in a straightforward 
way, where the traces and dependencies can be utilized for 
analysis. Traceability and dependency techniques are well 
established components in software engineering and their 
uses have been demonstrated in many areas including soft-
ware impact analysis, software testing and regression test-
ing, and tracing requirements artefacts to design and/or 
back to people. Data visualisation and simulation tools may 
complement these approaches to facilitate comprehension 
of the causes, effects, and the interconnections of the con-
tributing attributes. These tools can automatically produce 

charts containing interesting associations of various charac-
teristics of the software and their economics. 

The process of mining software repositories includes (i) 
setting a goal for the analysis (i.e. the mining objective); 
(ii) selecting the economics models which can perform the 
analysis; (iii) developing the mining tools for extracting 
and mining information, which could serve as inputs for 
the models in (ii); (iv) capturing and interpreting the de-
rived patterns; (v) modeling and computation; and (vi) re-
sult interpretations, analysis and reflection, where the min-
ing step can be complemented by economics analysis to 
provide an answer for queries related to the economics of 
software artifacts, project utilization, and management. The 
queries could range from simple to more Freakonomics style 
of queries.  For example, let us assume that the query is to 
understand the evolution pattern of component X in a given 
architecture and the cost trends of evolving X over a time 
period. The change history of X could be mined using ex-
isting approaches and can be then complemented by cost 
estimation to cast effort of evolving X over a given period 
to cost (in £). Note, these models could be adapted from 
finance, economics, etc. on condition that the model as-
sumptions are plausible or simplified to serve the software 
engineering mining objectives. The drawn analogy, the 
model inputs, and the made assumptions can then justify 
mining relevant repositories. In some cases, the analysis 
tool tends to shape the mining tool. An example is provided 
in Section 3, where adopting options analysis from finan-
cial engineering has constrained the way we extract and 
mined data.  

 

3. An Example  
 
In this section, we provide an example on realizing EDSM 
from our application of real options theory in software en-
gineering [Bah05] and [Bah08] and as a proof of concept.  

Setting. Let us consider a three-tier architecture of an 
online banking system application, referred to as Duke’s. 
This architecture will be built on middleware, such as Java 
2 Enterprise Edition (J2EE) and the Common Object Re-
quest Broker Architecture (CORBA). Depending on which 
middleware is chosen, different architectures may be in-
duced [DiN99]. Given the choice of either CORBA or 
J2EE to induce an architecture, let us assume that the 
Duke’s Bank system needs to scale to accommodate the 
growing number of clients in one-year time. An architec-
ture which can scale to address such changes in load with 
limited resources and shorter time-to-market is a significant 
asset for surviving the business, cutting down maintenance 
costs, utilizing resources, and creating value. In particular, 
the cost and value derived from the flexibility in scaling up 
due to inducing the architecture with either CORBA or 
J2EE can inform the decision tradeoffs in considering ei-
ther. Hence, the value added can inform the selection of 
application server products to induce Duke’s.  



Drawing on the Duke’s case, we show how existing 
performance benchmark repositories are utilized and 
mined to predict the values in which a given software ar-
chitecture induced by a middleware can scale to support 
changes in load. In particular, we mined relevant perform-
ance benchmarks to understand how the architecture of the 
system may behave once induced with either J2EE or 
CORBA with respect to throughput, which is a scalability 
and load measure. The mining is based on a financial anal-
ogy, where we “mimic” the concept of twin asset in finan-
cial engineering to justify mining relevant repositories and 
for valuing throughput using historical data. The approach 
utilizes online data and benchmarks, submitted from differ-
ent practitioners and vendors. The mining process is then 
complemented with real options analysis for predicting the 
values resulted from the ranges in which an architecture 
can scale under uncertainty, where uncertainty is attributed 
to the unpredicted change in load. The rationale is that the 
combination could provide the architect/analyst with a use-
ful tool for understanding the extent to which the software 
system is can accommodate the change in load and starting 
from early stages of the software lifecycle, where the sys-
tem need not be implemented.  

We now provide an example on realizing EDSM as 
highlighted in Section 2. The process comprises (i) setting 
the mining objectives, (ii) selecting the economics models 
which can serve the analysis of the said objectives; (iii) 
developing the mining tools for extracting and mining in-
formation serving the chosen model in (ii), and (iv) analyz-
ing and interpreting the derived patterns.  

Setting the mining objectives. Let us assume that we 
are given the choice of two middleware M0 and M1 to in-
duce the architecture of a particular system as it is the case 
of Duke’s. Let us assume that S0, S1 are the architectures 
obtained from inducing M0 and M1 respectively. Say, M1 is 
an economical choice, if it adds value to S1 relative to S0. 
We attribute the added value to the enhanced flexibility of 
S1 over S0 in scaling up the architecture. But the added 
value is uncertain, as the demand and the nature of the fu-
ture change and load are uncertain. We set some queries: 
(i) How valuable is the flexibility of either alternative, rela-
tive to likely change in scalability, will be in the long-run? 
(ii) Which solution is more valuable under uncertainty, 
where uncertainty is attributed to the unanticipated changes 
in load? (iii) What is the impact of volatility on value crea-
tion under given consideration? (iv)  What is the impact of 
uncertainty on our choice? (v) Can high uncertainty, due to 
the likely future load, make the less favorable technology 
more appealing for the decision maker (and vice versa)?  

The mining objectives and the queries look to be sparse, 
with questions that look to have implicit but not explicit 
links. The challenge now is to select the economics 
model(s), which could be suited for addressing the said 
objectives. It is worth noting that answering these questions 
require an economics-driven software engineering models, 

which will in turn tune the way data is mined from the re-
positories. As we can see that the value of flexibility under 
uncertainty is critical to choice of the economics models. 
The data representing uncertainty determines the reposito-
ries that we need to look at. 

Selecting economics models, which can serve the 
analysis of the said objective(s).  We argued that options 
theory is well suited to address the above mining objec-
tives. We formulate the objectives as an option problem: 

 Real options analysis recognizes that the value of the 
capital investment lies not only in the amount of direct 
revenues that the investment is expected to generate, but 
also in the future opportunities that flexibility creates 

[Erd00; Sul99]. An option is an asset that provides its 
owner the right without a symmetric obligation to make an 
investment decision under given terms for a period of time 
into the future ending with an expiration date [Tri95]. If 
conditions favorable to investing arise, the owner can exer-
cise the option by investing the exercise price defined by 
the option. A call option gives the right to acquire an asset 
of uncertain future value for the strike price [Tri95].  

ArchOptions[Bah05; Bah04], a real options based 
model which values the growth options of an architecture 
relative to some future changes, as a way for understanding 
the architectural flexibility with respect to changes in re-
quirements. A growth option is a real option to expand with 
strategic importance [Tri95] and is common in infrastruc-
ture-based investments, as it is the case with software ar-
chitectures. Since the future changes are generally unan-
ticipated, the value of the growth options lies in the en-
hanced flexibility of the architecture to cope with uncer-
tainty. ArchOptions builds on a simple and intuitive anal-
ogy with Black and Scholes [1973], described in Table 1.  

 
Table 1. Financial/real options/ArchOptions analogy 

Option on 
stock 

Real option on a 
project 

ArchOptions 

Stock Price Value of the 
expected cash 
flows 

value of the “architectural po-
tential” relative to the change 
xiVp 

Exercise 
Price 

Investment cost Estimate of the likely cost to 
accommodate the change Ceip 

Time-to-
expiration 

Time until oppor-
tunity disappears 

Time indicating the decision to 
implement the change (tp) 

Volatility Uncertainty of the 
project value 

“Fluctuation” in the return of 
value of V over a specified 
period of time (σ) 

 
In the context of ArchOptions, the flexibility of the 

middleware induced-architecture in coping with changes in 
load has a value in the form of growth options. This value 
is strategic in essence, uncertain as the demand on the fu-
ture changes are uncertain, and may not be immediate. The 
added value may take the form of (i) accumulated savings 



through coping with the change without “breaking” the 
architecture, mostly these are changes in non-functional 
requirements; (ii) extending the range of services while 
leaving the architecture intact; and (iii) the ability to re-
spond to competitive forces and changing market condi-
tions that may pose higher Quality of Service (QoS) re-
quirements, such as the demands for higher availability, 
scalability, and so forth.  

Choosing a particular middleware to induce the archi-
tecture of the software system can be seen as an investment 
to purchase flexibility in the induced software architecture. 
The ranges, in which the load changes, influence the 
choice. A “wise” selection is seen as an investment to buy 
flexibility, which could be valued as future growth options 
[Tri96] on the architecture of the software system. These 
options enhance the upside potentials of the structure when 
the load change; they differ from one middleware to an-
other. That is, S1 is said to be more accommodating to the 
change than S0 when S1 holds more growth options than S0. 
For a valuation point of view p, we focus the analysis on 
the calls of the ArchOptions model for valuing the growth 
options, as given in (1) accounting for both the expected 
value and exercise cost to accommodate future require-
ments ii, for i ≤ n. Valuing the expectation E of expression 
(1) uses the assumptions of Black and Scholes[Bla73] and 
detailed in previous work[Bah05; Bah04]. 

 
       ∑ i=1…n E [max (xiVp - Ceip, 0)]               (1)                    

 
The payoff of the constructed call option gives an indi-

cation of how valuable the flexibility of an architecture is, 
when enduring some likely changes in requirements. The 
selection has to be guided by the expected payoff in (∑ 

i=1…n E [max (xiVp - Ceip, 0])S1 relative to that of (∑ i=1…n E 
[max (xiVp - Ceip, 0])S0. That is, if (- Ie + ∑ i=1…n E [max 
(xiVp - Ceip, 0)] S1 > ∑ i=1…n E [max (xiVp - Ceip, 0)] S0) for 
some likely changes, then it is worth investing in M1, as the 
investment in M1 is likely to generate more growth options 
for S1 than for S0 and relative to the p valuation point of 
view.   
 If (E [max (xkVp - Cepk, 0)])S1=0), then M1 is not likely 
to payoff, relative to M0, as the flexibility of the architec-
ture to the change is not likely to add a value for S1  on p, if 
the change need to be exercised. Two interpretations might 
be possible: (i) the architecture is overly flexible in the 
sense that its response to the change(s) has not “pulled” the 
options relative to p. This implies that the embedded flexi-
bility (or the resources invested in implementing flexibility- 
if any) are wasted and unutilized to reveal the options rela-
tive to the changes and relative to p (ii) the other case is 
when the architecture is inflexible relative to the change. 
This is when the cost of accommodating the change on S1 
is much more than the cumulative expected value of the 
architecture responsiveness to the change. 

Developing the mining tools for extracting patterns 
serving the chosen economics model(s). Let us see how 
the choice of options theory and ArchOtions to valuation of 
scalability have guided the way relevant repositories are 
mined.  

Options valuation using Black and Scholes[1973] tech-
niques determine the value of an asset in question in span 
of the market value using a correlated twin asset [Tri95]. 
The twin asset is an asset that has the same risks as the as-
set in question will have when the investment has been 
completed [Sch00]. To understand the behavior of the asset 
in question, we can use a twin asset, also referred to as a 
replicated portfolio. The assumption is that under similar 
conditions the twin asset and the asset in question are inter-
changeable for all practical purposes and should be worth 
the same.  

Throughput, a scalability measure, expresses the 
amount of work performed by the system under test during 
a unit of time. This criterion is based on the observation 
that for a fixed system with a given throughput (e.g., a sin-
gle host), there is an inverse relationship between the re-
sponse time and the number of clients. In other words, the 
more clients submitting requests, the longer are the delays. 
A well-known throughput metric is the Total Operations 
Per Second (TOPS) completed during the measurement 
interval, referred to as TOPS [http://www.spec.org/]. TOPS 
is composed of the total number of business transactions 
completed in the customer domain, added to the total num-
ber of work orders completed in the manufacturing domain, 
normalized per second[http://www.spec.org/]. 

We have mined relevant performance benchmarks, pub-
lished in (http://www.spec.org/) to understand how the 
architecture of the system may behave once induced with 
either J2EE or CORBA with respect to throughput. An 
extract is shown in figure 1. We only use benchmarks, 
which are close to the case at hand. We then normalize the 
mined benchmarks for easing the comparison. We appealed 
to the use of published benchmarks, for the following rea-
sons: 

 
 The system of the given architecture need not be im-

plemented during the evaluation. Thus, performance 
measures may not be available.  

 We argue that using published benchmarks mimics the 
concept of the twin asset for we are relying on histori-
cal information (though not traded in span of the mar-
ket, but still hold market information) which shows 
possible variations in performance in connection to 
change in load and relative to the candidate implemen-
tations.  

 These benchmarks often hint that the throughput is 
dependent on and can be estimated from the middle-
tier “processing power” of the architecture. The advan-
tage of this approach is that the published benchmarks 
could reveal risks of the operating environment on the 
choice. Benchmarks are revealing on the performance 



dimension because, for example, if multiple bench-
marks are conducted with a suitable mix of relevant 
factors, it may be possible to obtain a set of basic scal-
ability results that can be used for estimating the 
throughput of possible configurations of the architec-
ture. Depending on the benchmarking algorithm, the 
relevant scalability factors can be, for example, the 
number of objects, the number of clients, or the num-
ber of nodes in the system etc. supported in response 
to growing load. A major problem in comparing 
benchmark results, however, is that different hardware 
platforms and configurations (e.g., memory, disk 
drives etc) often produce different results making the 
comparisons difficult.  

 Further, vendors often try many different ways to op-
timize performance, including adding cache memory 
and putting cache buffers on disk arrays. This can give 
a wide spectrum of worst and best scenarios that could 
mimics fluctuation, which is a volatility measure, of 
the option approach.   

 

 
 

Figure 1. Example of repositories of benchmarks for throughput 
 

 
Analyzing and interpreting the derived patterns. 

Figure 2 shows the likely throughput trend that the J2EE-
induced architecture may exhibit relative to the CORBA-
induced one, upon varying the TOPS and the number of 
hosts. For the J2EE-induced architecture, we provide 
throughput estimations for two possible implementations: 
one with JBoss and the other with WLS. For the CORBA-
induced architecture, we provide estimates upon the use of 
JacORB to induce the architecture. Table 2 depicts the up-
per limit of TOPS supported per host for each of WLS, 
JBOSS, JacORB induced architectures for 1 to 4 hosts.  
Figure 3 shows the likely cost-trend upon inducing the 
Duke’s bank architecture with J2EE (using either WLS or 
JBOSS) and with CORBA (using JacORB). The likely cost 
is plotted against the number of hosts (1 to 4). The cost 
refers to the lifecycle cost of the System Under Test (SUT). 
The cost includes Application Servers/Containers, Data-
base Servers, network connections, etc. Assuming, for ex-
ample, a five-year lifecycle, cost would include all hard-

ware (purchase price), software including license charges, 
and hardware maintenance. For the CORBA version, it 
assumed that the investment incurs an upfront cost to the 
development of the replication mechanism to support fault-
tolerance and load-balancing services for high load scenar-
ios [Bah05b]. For the J2EE version of WLS, a license cost 
is incurred per host. 
   

Throughput of WLS, JBOSS, and JacORB upon 
varying the load and hosts

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

1 2 3 4

No of hosts

TO
PS

WLS
JBOSS
JacORB

 

Figure 2. TOPS/host for each of WLS, JBOSS, JacORB (1- 4 
hosts) 
 

In [bah05], we have seen that the structural analysis is 
in favor of the J2EE-induced architecture, the throughput 
analysis may reveal a different trend upon scaling up each 
version. From the throughput valuation point of view, Fig-
ure 2 shows that when the Duke’s architecture will be in-
duced with JBOSS, a J2EE implementation, the system is 
likely to be slower than that of the JacORB one. This is 
because JBOSS uses reflection [http://www.jboss.org]. 
This also implies that there are some chances for the 
JBOSS-induced architecture to require more hardware for 
addressing this deficiency. When inducing the Duke’s ar-
chitecture with WLS, another J2EE implementation, the 
system is very likely to be faster than that of the JacORB 
implementation. WLS, however, comes with significant 
licenses costs; this cost grows with the number of hosts, as 
the load increases. Coining the TOPS with their associated 
costs, Figure 2, Figure 3 and Table 2, hint that there might 
be a case for JacORB in certain throughput range. More-
over, note that once the services for realizing scalability 
(i.e., the fault-tolerance and load balancing service) are 
implemented, the cost is incurred once and amortized 
across the hosts.  

 
Table 2. Upper limit of TOPS/host for  WLS, JBOSS, JacORB 
 Hosts WLS JBOSS JacORB 

1 732.00 400.26 546.80 

2 918.36 502.16 686.01 

3 1395.44 763.03 1042.39 

4 2640.96 1444.08 1972.79 

 



WLS, JBOSS, and JacORB Costs for 1-4 hosts
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Figure 3. Likely cost-trend upon inducing the Duke’s bank architec-
ture with J2EE-(WLS/JBOSS) and with CORBA (JacORB) 

 
Modeling and computation. The case of valuing 

throughput is appealing to ArchOptions for the following 
major reasons: First, there is cone of uncertainty associated 
with the growing load and consequently in the value added 
as result of our choice. Moreover, the TOPS are of straight-
forward contribution to value. That is, the more operations 
are completed per second, the more value is added to the 
enterprise. However, TOPS incur a price upon executing 
the operations. The price again is dependent on several 
factors such as the number of hosts, the hardware, the li-
cense cost, and any additional costs that are necessary for 
making the middleware adaptable to the growing load. In 
the context of the Duke’s Bank, the TOPS range is often 
uncertain as it is dependent on the customers’ behavior at a 
time. The uncertainty in the likely range (i.e., TOPS), the 
associated costs for executing the TOPS, and the “fluctua-
tion” in the value added as a result make the case very ap-
pealing to the use of ArchOptions. Below, we estimate the 
parameters for computing throughput, Pthro using ArchOp-
tions to address the set mining objectives.  

Estimating (CeiPthro). TOPS denotes the Total Operations 
completed per Second. For simplicity of explanation, let us 
assume that the system of the induced architecture needs to 
scale up to support an additional operation per unit-time. 
An additional operation buys an architectural potential pay-
ing an exercise price. In terms of throughput, architectural 
potential is a performance measure. Hence, what an extra 
operation pays, if materializes, is a bandwidth for perform-
ing that operation. Inducing the Duke’s bank with either 
J2EE or CORBA provide different bandwidth capabilities 
for performing the operation at different prices. If the im-
plementation of either happens to hold embedded growth 
options in supporting the extra operation, then the opera-
tion is said to pay an exercise price to buy options on the 
architecture. For the exercise price, we use a well-known 
normalization factor, which is the price/performance 
[http://www.spec.org/jAppServer2005/] (i.e., the lifecycle 
cost of the System Under Test (SUT) as configured for the 
benchmark divided by the throughput). This is provided in 
the data mined. As an example, assuming five-year lifecy-
cle, the cost would include all hardware (purchase price), 
software including license charges, and hardware/software 
maintenance. If the total price is $5,734,417 and the re-

ported throughput is 105.12 TOPS, then the 
price/performance is $54,551.16/TOPS.  

Estimating volatility (σPthro). Volatility represents uncer-
tainty attributed to the likely growing of load. For some 
computation, we abide to the real options principles in 
computing volatility: we use the standard deviation of xiVP-

thros due supporting extra operations for a range of load at a 
host (as the range is said to be revealing to the fluctuation 
in the value). For other computations, we use modeling 
estimates for volatility, representing uncertainty to demon-
strate how volatility influences the choice and as a way to 
answer the mining objectives. 

Estimating (xiVPthro). For simplicity, we estimate xiVPthro 
relevant to the business domain. For every completed on-
line operation, Duke’s would not have to serve a customer 
in person at a branch; the Duke’s savings are in the man-
ual-effort for not serving clients at a branch.  
 Exercise time (t Pthro) and free risk interest rate(r Pthro). As a 
simulation assumption, we set the exercise time to one 
year, assuming that the Duke’s Bank needs to accommo-
date the change in one-year time. We set the free risk inter-
est rate to zero (i.e., assuming that the value of money to-
day is the same as that in one year’s time). 
 Results interpretations and analysis. Now, We an-
swer and reflect on the mining objectives we set to demon-
strate usefulness of EDSM. We complement the observed 
patterns with options computation to inform the problem of 
tradeoff analyses and decision making in selecting a candi-
date middleware to induce an architecture, relative to Pthro. 
The likely change in load is the major source of uncertainty 
that faces Duke’s Bank. To address uncertainty and provide 
better insights on value creation, we have appealed to the 
use of real options theory. Let us have a close look at the 
impact of the volatility parameter, which is an expression 
of uncertainty to address the mining objectives.  

In options computation, volatility estimates the “cone of 
uncertainty” in the future value of the asset, rooted as its 
current value and extending over time as a function of 
volatility. As volatility increases, total uncertainty around 
the benefits also increases. The more TOPS a host is likely 
to support, the more likely that the actual benefits to “wan-
der” up and down and deviate from the expected present 
value if the load grows. Let us assume that the present load 
is in the range of 30- 50 TOPS. Based on the mined data, 
30-50 TOPS could be easily addressed by one host using 
either M0 (JacORB) or M1 (Jboss or WLS).  

For such a low throughput requirements, inducing the 
architecture with M0 may appear to be more attractive as 
when compared to inducing the architecture with M1 (using 
either JBOSS or WLS). This is because M1 incurs license 
costs for WLS. Moreover, looking at S1 when induced with 
JBOSS, S1 is likely to be in magnitude slower than S0 as 
when induced with JacORB due to its use of reflection. 
This means that S1 (JBOSS) will support fewer TOPS and 
consequently will create less value added per second as 



when compared to S0. For such low load, the fault-
tolerance and load-balancing services need not be imple-
mented on S0 [Bah 05]. If options analysis is not used, M0 
will be a no-brain choice for inducing the Duke’s Bank 
architecture. Though inducing the architecture S1 with M1 
(using WLS) appears less attractive than M0 (JacORB), S1 
may still carry embedded growth options which will only 
materialize if the load grows. If we use a Present Value 
(PV), the computation will based on the benefits of sup-
porting the TOPS less their costs (i.e., the computation 
does not account for uncertainty). The resulted valuation 
will compute the present value as realized and ignore the 
growth options. In other words, inducing the architecture 
with WLS if undertaken, PV would hint that S1 would de-
stroy value rather than create it. That is, Value S1 = PV. 
However, ValueS1 is actually Value S1 = PV + Opt.  That is, 
M1 carry embedded growth options, Opt. The Opt, if left 
unexercised, are ignored by the non-options analysis. 
Hence, Value for S1 is then said to be underestimated. As a 
result, S0 may look more attractive (Table 3). The Present 
Value calculation of Table 3 shows that S1 is the least at-
tractive for this range of load. The computation is based on 
the benefits of supporting 100 TOPS less their costs. How-
ever, the computation ignores the growth options on S1 in 
supporting additional 632 TOPS using the first host. Simi-
larly, PV systematically undervalues the growth potential 
of S1 (JBOSS) and S0 (JacORB) in respectively supporting 
300.26 TOPS and 446.26 TOPS. That is, PV ignores the 
flexibility value of S1 and S0 in responding to the growing 
load at host 1.  
 
Table 3. Illustration PV per second ($) for low throughput (100 
TOPS)  
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S1(WLS) 732.00 853.11 12.63 -840.48 -632  

S1(JBOSS)      
400.26 603.11 12.63 -590.48 

 -300.26 

S0(JacORB)     
546.80 

    
603.11 12.63 -590.48 

-446.80 

 

Note, it is a fact that PV does not work well for projects 
with future decisions that depend on how uncertainty re-
solves. Though they can be used to evaluate the operational 
benefits in a stable environment with well-understood and 
measurable costs and benefits, they have little to offer 
when capturing additional value due to flexibility under 
uncertainty, such as strategic opportunities and the ability 
to respond to changing conditions. Using PV, S1, when 
induced with WLS, reports negative values upon inducing 
the architecture with WLS for this range of load. However, 
the situation indicates that these results underestimate the 
value of S1, as S1 can better respond to uncertainty, where 
the load is likely to grow over 100 TOPS. In Table 4, we 
turn to ArchOptions to capture the growth options on S1 

and S0. The volatility parameter is an expression of the 
range of “benefits” at a host. For S1 (WLS): the benefits 
could “wander” from zero (i.e., idle state with no opera-
tions executing at a second) to the benefits derived from 
full utilization of capacity (i.e., in the support of 732 
TOPS). That is, the volatility of 66%  for  S1 (WLS) indi-
cates that the benefits of executing the TOPS is in the range 
of $0(idle) to $92.42(full utilization) per second on host 1. 
Similarly, for S0 (JacORB): the 45% volatility for S0 
(JacORB) indicates that the benefits of executing the TOPS 
are in the range of $0(idle) to $69.04 (full utilization) per 
second on host 1. As for the options on S1(WLS), S1 has 
“pulled” the options on one host for this range of load. This 
is because we have accounted for the possible fluctuation 
in the derived values from supporting the TOPS. Consider-
ing such “fluctuation” provides us with better insights on 
the architectural potential of S1 in support of this likely 
change in load. Table 4 suggests S1 has reported a value 
added of $0.017 on 1 host.  
 
Table 4. Illustration options per second ($) very low throughput 
scenario (100 TOPS)  

100 TOPS CeiPThro XiVP-

Thro 
σPthro Options  Actual Value 

 (TOPS) 

S1(WLS) 853.11 92.42 66% 0.01700 100 + 632  

S1(JBOSS) 603.11 50.53 35% 0+ 100 + 300.26 

S0(JacORB) 603.11 69.04 49% 0.00001 100 + 446.80 

 
Let us now assume that Duke’s Bank needs to support 

more customers. Assume that the load is likely to grow and 
be in the range of 600- 686 TOPS (Table 5): S1, when in-
duced with WLS, realizes the change in load by one host. 
S0, when induced with JacORB, will need two hosts and 
will incur the cost of developing the fault-tolerance and 
load-balancing services on the structure. Yet, S1 when in-
duced with JBOSS will require three hosts and will incur 
additional hardware costs for completing the 686 TOPS. 
Figure 4 shows a scenario for a likely load of 600-686 
TOPS for S1 when induced with WLS and for S0 when 
induced with JacORB. S1 could be regarded as an invest-
ment with a wide range of possible outcomes. However, S0 
is an investment with a relatively narrower range. For S1, 
the investment is said to be more volatile. This is because 
S1 can support more TOPS/host resulting in a possible 
range of values. Relating this to PV, this means that there is 
a chance of producing positive PV in the future. Hence, a 
real option under this set of outcomes would have value. 
As for the S0, the valuation under this scenario is more sta-
ble. This is because S0 can support at most 686 TOPS for 
the existing configuration. This means that S0 has no 
chance of producing a project with a positive PV beyond 
686 TOPS. That is an option using the latter set of out-
comes would have no value. 



 
Figure 4. Impact of volatility on value 

 
Table 5. Options in ($) per second under full utilization of  hosts for 
load greater than 686 TOPS on S0 and S1 and values added 
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4. Related Work 
 
Mining Software Repositories (MSR) [MSR 1-4] is an in-
creasingly growing community in Software Engineering. 
The workshop web [http://msr.uwaterloo.ca/] provides ex-
cellent up-to-date online reference summarizing the contri-
bution to MSRs since the workshop inception. In summary, 
contributions have revolved around approaches which ana-
lyze the data stored in software repositories to assist in pro-
gram understanding and visualization; predict and gauge 
the reliability and quality of software systems; study the 
evolution of software systems through discovering patterns 
of change and refactorings; modeling defects and their re-
pair; and understand the origins of code cloning and design 
changes. Contributions have also looked at case studies 
showing how data can be extracted from software reposito-
ries to improve software design and reuse. Challenges fac-
ing the MSR community like exchanging formats, meta-
models, infrastructure and tools to facilitate the sharing of 
extracted data and to encourage reuse and repeatability 
have also been proposed, discussed, and debated. Case 
studies, on extracting data from repositories of large long 
lived projects and suggestions for benchmarks are areas of 

interest that the MSR community has reported some results. 
These contributions, however, are essentially technical 
endeavor with no attention paid to the economics context. 
For example, software repositories are often mined and 
analyzed ignoring the link between technical properties, 
economics, and value creation under a given circum-
stances. Our contribution is novel in addressing this gap.  

Meanwhile, another community pioneered by Sullivan, 
Notkin, Shaw, and Boehm and their colleagues are inter-
ested in linking technical engineering concepts to econom-
ics and value creation [ESDM1-8]. Up to our knowledge, 
no contribution has been reported on EDSM, except for our 
recent position statement [Bah07]. Hence, our contribution 
bridges the gap between these two communities. It could be 
argued however that researchers in software economics 
have been mining software repositories since the early days 
of the field and mainly for cost and resource justification. 
This is true with no doubt.  However, effort has not been 
focused on the link between technical decisions and value. 
Moreover, the type of analysis we’ve addressed is not clas-
sical; it resembles that of Freakonomics in nature. 

In [Bah05], we quantified the value of the structure  in 
scaling to accommodate the change, by looking at the cost 
of change and by valuing the savings in maintenance, de-
ployment, and configuration costs to realize the change on 
each structure of Duke’s[Bah05]. In [Bah08], we focus the 
analyses on the behavioral aspect to analyze scalability, 
where we use throughput to measure scalability: despite the 
clear connection of scalability to value, there is a general 
lack of value-driven models and methods, which connect 
this property to value under given circumstances. In this 
paper, we define EDSM. We look at how the mining objec-
tives can influence the chosen economics models.  We 
show how the chosen economics models can then inform 
the sources to be mined for answering the set objectives 
and informing software architecture-design tradeoffs.  

 
5. Conclusion 
 
We have defined Economics-Driven Software Mining 
(EDSM). We have highlighted a scenario for realizing 
EDSM. We have presented an example on realizing 
EDSM. The example describes how software repositories 
could be mined to value the ranges in which a given soft-
ware architecture can scale to support likely changes in 
load. The exposed arguments of Section 3 provide an ex-
ample of the invaluable insights that the analyst might 
benefit from upon complementing the mined data with 
economics computation. These arguments show how 
EDSM can be a powerful tool for connecting technical 
concerns in software to value creation under given circum-
stances, where “freak” type of analysis is the norm. Such 
analysis has the promise to provide the software analyst 
with a powerful tool for predicting cost/value information 
for developing and evolving dependable software and un-



derstanding the economics ramification of the change on 
the system and its design artifacts (e.g., architectures); and 
informing design trade-offs. The objective is to provide 
insights into investment decisions related to the develop-
ment and evolution of software systems and assisting in 
resource planning and utilization. Ongoing work includes 
designing an automated infrastructure and tools support 
Freak-style to EDSM. Effort includes designing a semi-
automated support for executing the EDSM process, which 
we described including deriving interesting patterns, facili-
tating the computation, visualizing the results, assisting in 
interpretations, and supporting sensitivity analyses. Inter-
estingly, MSR [1-4] drew the attention to a new challenge 
faced by empirical studies: whereas previous studies suf-
fered from lack of data, current studies face challenges 
dealing with enormous amounts of freely available data 
from easily accessible repositories online such as forums, 
code, and bug reports repositories. Though this fact may 
have implications on the quality of the mined data and the 
resulted analysis under a given circumstance, this could 
also hint to opportunities for EDSM, where existing knowl-
edge could provide insights into investment decisions re-
lated to development and evolution of systems.  This could, 
for example, be based on analogies and similar to the way 
we have “mimicked” the concept of twin asset.  
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