
Reflective Middleware Solutions for
Context-Aware Applications

Licia Capra, Wolfgang Emmerich and Cecilia Mascolo

Dept. of Computer Science
University College London

Gower Street, London, WC1E 6BT, UK
{L.Capra|W.Emmerich|C.Mascolo}@cs.ucl.ac.uk

Abstract. In this paper, we argue that middleware for wired distributed
systems cannot be used in a mobile setting, as the principle of trans-
parency that has driven their design runs counter to the new degrees of
awareness imposed by mobility. We propose the marriage of reflection
and metadata as a means for middleware to give applications dynamic
access to information about their execution context. Finally, we describe
a conceptual model that provides the basis of our reflective middleware.

1 Introduction

Recent advances in wireless networking technologies and the growing success
of mobile computing devices, such as laptop computers, third generation mo-
bile phones, personal digital assistants, watches and the like, are enabling new
classes of applications that present challenging problems to designers. Devices
face temporary and unannounced loss of network connectivity when they move;
they discover other hosts in an ad-hoc manner; they are likely to have scarce re-
sources, such as low battery power, slow CPU speed and little memory; they are
required to react to frequent changes in the environment, such as new location,
high variability of network bandwidth, etc.

When developing distributed applications, designers should not have to deal
explicitly with problems related to distribution, such as heterogeneity, scalability,
resource sharing, and the like. Middleware developed upon network operating
systems provides application designers with a higher level of abstraction, hid-
ing the complexity introduced by distribution. Existing middleware technologies,
such as transaction-oriented, message-oriented or object-oriented middleware [4]
have been built adhering to the metaphor of the black box, i.e., distribution
is hidden from both users and software engineers, so that the system appears
as a single integrated computing facility. In other words, distribution becomes
transparent. These technologies have been designed and are successfully used
for stationary distributed systems built with fixed networks, but they do not
appear to be suitable for the mobile setting. Firstly, the interaction primitives,
such as distributed transactions, object requests or remote procedure calls, as-
sume a high-bandwidth connection of the components, as well as their constant

availability. In mobile systems, in contrast, unreachability and low bandwidth
are the norm rather than an exception. Moreover, object-oriented middleware
systems, such as CORBA, mainly support synchronous point-to-point commu-
nication, while in a mobile environment it is often the case that client and server
hosts are not connected at the same time. Secondly, and most notably, com-
pletely hiding the implementation details from the application becomes both
more difficult and makes little sense. Mobile systems need to detect and adapt
to drastic changes happening in the environment, such as changes in connec-
tivity, bandwidth, battery power and the like. By providing transparency, the
middleware must take decisions on behalf of the application. The application,
however, can normally make more efficient and better quality decisions based on
application-specific information. This is particularly important in mobile com-
puting settings, where the ‘context’ (e.g., the location) of a device should be
taken into account [2].

In this paper, we propose the joint use of reflection and metadata in order to
develop middleware targeted to mobile settings. Through metadata we obtain
separation of concerns, that is, we distinguish what the middleware does from
how the middleware does it. Reflection is the means that we provide to applica-
tions in order to inspect and adapt middleware metadata, that is, influence the
way middleware behaves, according to the current context of execution.

2 Principles of Reflective Middleware

In this section, we introduce the basic principles that have driven the design of
our reflective middleware.

Applications running on a mobile device need to be aware of their execution
context. By context, we mean everything that can influence the behaviour of
an application. Under this general term, we can identify two more specific lev-
els of awareness, already encountered in our case study: device awareness and
environment awareness. Device awareness refers to everything that resides on
the physical device the application is running on; for example, memory, battery
power, screen size, processing power and so on. We call these entities internal re-
sources. Environment awareness refers to everything that is outside the physical
device, that is bandwidth, network connection, location, other hosts (or services)
in reach, and so on. We call these entities external resources.
On one hand, being aware of the execution context requires the designer to know,
for instance, the location of the device, the hosts in reach, and, in general, any
piece of information that is collected from the network operating system. On the
other hand, we do not want the application designers to build their applications
directly on the network OS, as this would be extremely tedious, error-prone
and lead to non-portable applications. Instead a middleware should be used to
solve these issues. The middleware must interact with the underlying network
operating system and keep updated information about the execution context in
its internal data structures. This information has to be made available to the
applications, so that they can listen to changes in the context (i.e., inspection

of the middleware), and influence the behaviour of the middleware accordingly
(i.e., adaptation of the middleware).

User Profile

Profile
Application

Context

Middleware

Application

User

*

*

Network OS

Fig. 1. User and application profiles.

Reflection and metadata are the means we rely on to build middleware sys-
tems that support context-aware applications. As Fig. 1 shows, there may be
several applications running on the same middleware, and many different users
using the same application. Each user may customize the application in many
different ways; users can, for example, customize the task bar of the application
interface using some icons instead of others; but they can also do more sophisti-
cated things like asking the application to be silent when the user is in particular
places (e.g., in a movie theatre, on a train, etc.), automatically disconnect from
the network when the battery power is too low, etc. To do so, the user sets up
a user-profile that instructs the application on how to behave in different cir-
cumstances. From an application point of view, we call ‘data’ the subject of its
own computation or, we could say, of its functional requirements (e.g. a product
catalogue for an e-shopping application). The user-profile is instead what we
define as application metadata. The application filters out the settings it can
manage alone in a context-independent way (e.g., layout of the task bar), and
translates the other ones into an application profile that is then passed down
to the middleware. From a middleware point of view, the context is its own
data (e.g., value of the bandwidth, status of the network connection, status of
the battery power, etc.), while the application profile is its own metadata (see
Fig. 2). From now on, it is the middleware that is in charge of maintaining a
valid representation of the context, directly interacting with the network operat-
ing system; whenever a change in the execution context is detected, it consults
its metadata to find out how the application has asked it to behave in such a
configuration. Now the question is whether it is reasonable to assume that the
application fixes its own profile once and for all at the time of installation and
never changes it after. The answer is no. Both the needs of the user and the
context change quite frequently, and we cannot expect the application designers
to foresee all the possible configurations. We therefore need to provide the mid-

independent
Context

Context
dependent

User profiles
Application profiles

Application Layer Middleware Layer

Metadata

Data (e.g. bandwidth, location, etc.)
execution:Context of

(e.g. product catalogue for an
e-shopping application)

Subject of computation:

Fig. 2. Application and Middleware data/metadata.

dleware with an initial profile, and then grant the application dynamic access to
it. Here is where reflection comes into play. By definition [3], reflection allows a
program to access, reason about and alter its own interpretation. The principle
of reflection has been mainly adopted in programming languages, in order to
allow a program to access its own implementation (see the reflection package of
Java or the interface repository in CORBA). The use of reflection in middleware
is more coarse-grained and, instead of dealing with methods and attributes, it
deals with middleware data and metadata. Metadata store information about
how the middleware has to behave when executing in a particular context. Ap-
plications use the reflective mechanisms provided by middleware to access their
own profile, so that changes in this information immediately reflect into changes
in the middleware behaviour.

3 Reflective Conceptual Model

The last section has left us with an open question: what information do we need
to encode in the application profile, that is, in the middleware metadata, and
how? We now provide an answer.

The application profile is written by the application designer and then man-
aged by the underlying middleware, that is, there must be an agreement be-
tween the two parts about the representation of the profile. We believe that the
eXtended Markup Language (XML)[1], and related technologies (in particular
XML Schema) can be successfully used to model this information. In our sce-
nario, middleware defines the grammar, that is the rules that must be followed
to write profiles, in an XML Schema; the application designer then encodes the
profile in an XML document that is a valid instance of the grammar. Every
change done later to the profile must respect the grammar, and this check can
be easily performed using available XML parsers.

To understand what information to encode, we distinguish two different ways
in which the application influences the behaviour of the middleware.

1. Changes in the execution context. The application can ask the middleware
to listen to changes in the execution context and react accordingly, indepen-
dently of the task the application is performing at the moment. For example,
the application may ask the middleware to disconnect when the bandwidth is

Policy

Internal
Resource

External
Resource

*

Service

Policy
*

* *

Aware Set-up
Context

Context

*

Service Request
Application

Configuration Configuration

Fig. 3. Application profile.

fluctuating, or when the battery power is too low. We establish an association
between particular context configurations that depend on the value of one or
more resources the middleware monitors, and policies that have to be applied,
as shown on the right-hand side of Fig. 3. Fig. 4 illustrates a simple example of
an XML document for this kind of information.

<RESOURCE name="battery">
<STATUS operator="lessEqual" value=x/> % context configuration
<BEHAVIOUR policy="disconnect"/> % policy

</RESOURCE>

Fig. 4. XML encoding of a context aware set-up.

Middleware interacts with the underlying network operating system in order
to keep an updated configuration of the context. Whenever a change in the
context happens, it looks up in the application profiles of running applications
whether one or more of them have registered an interest in the changed resources,
and triggers the corresponding actions.

2. Service request. The application can ask the middleware to execute a ser-
vice; for example, to access some remote data it has not cached locally. There are
many different ways a service can be provided; for example, the service ‘access
data’ can be delivered using at least two different policies, ‘copy’ (i.e., a physical
copy of the bunch of data is created locally) and ‘link’ (i.e., a network reference
to the master copy is created). The circumstances under which an application
may want to use them are different: a physical copy of data may be preferred
when there is a lot of free space on the device, while a link may become necessary
when the amount of available memory prevents us from creating a copy, and the
network connection is good enough to allow reliable read and write operations
across it. Therefore, for every service the application may ask the middleware,
the application profile specifies the policies that have to be applied and the re-

quirements that must be satisfied in order to choose which of them to apply.
These requirements are expressed in terms of the execution context (left-hand
side of Fig. 3). Fig. 5 gives an example of how to express this information in the
application profile in XML.

<SERVICE name="accessData">
<BEHAVIOUR policy="copy">

<RESOURCE name="memory">
<STATUS operator="greaterEqual" value=x/>

</RESOURCE>
</BEHAVIOUR>
<BEHAVIOUR policy="link">

<RESOURCE name="bandwidth">
<STATUS operator="greaterEqual" value=y/>

</RESOURCE>
<RESOURCE name="memory">

<STATUS operator="less" value=x/>
</RESOURCE>

</BEHAVIOUR>
</SERVICE>

Fig. 5. XML encoding of an application service request.

Particular services that middleware systems must provide to all the supported
applications include trading and binding services. A trading service is put in place
to find out which host provides a specific service requested by an application. In
a mobile setting, hosts may come and leave quite rapidly; the services available
when a host disconnects from the network can be completely different from the
ones the host finds in the context when it reconnects. Therefore, on every host
there must be a trader that keeps track of all the services provided by the hosts
that are in reach at the moment. In general, there may be more than a provider
of the same service; for example, if the service we are looking for is “access data
x”, there can be more than one host holding a replica of x in our neighborhood.
In such a situation, the trader needs to choose which one to contact, and this
decision can be taken using many different strategies (e.g., contact the closest
host, contact the host on the cheapest link, etc.). Every application specifies (in
its own profile) how the trading service must be delivered to it, that is, which
policy the trader must apply when selecting service providers for the requests
coming from this application.

Once the service provider to be contacted has been chosen, the middleware
needs to decide which policy to apply to serve the request it is dealing with. If
the application has not specified a particular policy, a binding service is invoked;
the binder is in charge of checking the requirements related to each policy and
deciding which one to adopt. Again, there may be circumstances where more
than one policy can be followed; the selection is driven by the strategy (i.e.,
policy) specified by the application in its own profile under the voice “binding
service” (e.g., use the policy that requires the least amount of resources, the one
that provides the best quality of service, and so on).

For the reflective principle, middleware must grant applications dynamic ac-
cess to their profiles: whenever a profile is modified, the middleware runs a val-
idating parser that parses the document and checks whether it is a valid XML
instance of the grammar provided by the middleware to the application. Also the
grammar, that is, the XML schema, can be updated and the middleware is in
charge of verifying the consistency of the updates: for example, if a new policy
P is introduced, the code for it must be provided1. In this way, we can both
reconfigure the middleware to adapt to unpredictable situations, and extend the
set of behaviours it provides with great flexibility.

4 Discussion and Related Work

We have described a middleware for context-aware mobile applications based on
the principle of reflection and metadata. Through metadata, we achieve sepa-
ration of concerns, that is, we distinguish what the middleware does from how
the middleware does it. Reflection is then used to provide applications dynamic
access to middleware metadata.

The principle of reflection has already been investigated by the middleware
community during the past years, mainly to achieve flexibility and dynamic
configurability of the ORB. Examples include OpenCorba, dynamicTAO, the
work done by Blair et al., etc. Even though we adhere to the idea of using
reflection to add flexibility and dynamic configurability to middleware systems,
the platforms developed to experiment with reflection were based on standard
middleware implementations (i.e., CORBA), and therefore not suited for the
mobile environment.

Other middleware systems have been built to support mobility, without using
the reflective principle. However, we observe that only partial solutions have been
developed to date, mainly focused on providing support for location awareness
(e.g., Nexus and Teleporting), and for disconnected operations and reconciliation
of data (e.g., Bayou and Odyssey).

Tuple space coordination primitives, initially suggested for Linda, have been
employed in a number of mobile middleware systems such as Jini/JavaSpaces,
Lime, and T Spaces, to facilitate component interaction for mobile systems.
Although addressing in a natural manner the asynchronous mode of communi-
cation characteristic of ad-hoc and nomadic computing, all these systems are
bound to very poor data structures (i.e., flat unstructured tuples), which do
not allow complex data organization and therefore can hardly be extended to
support metadata and reflection capabilities. We believe that XML, and in par-
ticular its associated hierarchical tree structure, allows semantically richer data
and metadata formatting, overcoming this limitation.

1 If everything is implemented in Java, the existence of a class P (to be dynamically
loaded by the Java Class Loader) can be required.

5 Future Work and Concluding Remarks

The growing success of mobile computing devices and networking technolo-
gies, such as WaveLan and Bluetooth, call for the investigation of new middle-
ware that deal with mobile computing requirements, in particular with context-
awareness. Our goal in this paper has been to outline a global model for the
design of mobile middleware systems, based on the principle of reflection and
metadata. The choice to use XML to represent metadata comes from our previ-
ous experience with xmiddle [5], an XML-based middleware for mobile systems
that focuses on data reconciliation and synchronization problems and solves them
exploiting application-specific reconciliation strategies. Our plan is to extend the
previously built prototype to fully support the reflective model presented here.

Other issues to be investigated are the followings. Conflicting policies: what
happens if two applications ask the middleware to behave differently when ex-
ecuting in the same context? What if the same application requires conflicting
behaviors when changes related to different resources happen at the same time
(e.g., “disconnect when battery is low” vs. “connect when bandwidth is high”)?
All these questions are currently under investigation

Another major problem is security. Portable devices are particularly exposed
to security attacks as it is so easy to connect to a wireless link. Reflection seems
somehow to worsen the situation. Reflection is a technique for accessing pro-
tected internal data structures and it could cause security problems if malicious
programs break the protection mechanism and use the reflective capability to
disclose, modify or delete data. Security is a major issue for any mobile comput-
ing application, and therefore proper measures need to be included in the design
of any mobile middleware system. We plan to investigate this issue further.

References

1. T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language. Rec-
ommendation http://www.w3.org/TR/1998/REC-xml-19980210, World Wide Web
Consortium, March 1998.

2. L. Capra, W. Emmerich, and C. Mascolo. Middleware for Mobile Computing:
Awareness vs. Transparency (Position Summary). In Proceedings of the 8th Work-
shop on Hot Topics in Operating Systems (HotOS-VIII), Schloss Elmau, Germany,
May 2001.

3. F. Eliassen, A. Andersen, G. S. Blair, F. Costa, G. Coulson, V. Goebel, O. Hansen,
T. Kristensen, T. Plagemann, H. O. Rafaelsen, K. B. Saikoski, and W. Yu. Next
Generation Middleware: Requirements, Architecture and Prototypes. In Proceedings
of the 7th IEEE Workshop on Future Trends in Distributed Computing Systems,
pages 60–65. IEEE Computer Society Press, December 1999.

4. W. Emmerich. Software Engineering and Middleware: A Roadmap. In The Future
of Software Engineering - 22nd Int. Conf. on Software Engineering (ICSE2000),
pages 117–129. ACM Press, May 2000.

5. Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. An XML-based Middleware
for Peer-to-Peer Computing. In Proc. of the International Conference on Peer-to-
Peer Computing (P2P2001), Linkopings, Sweden, August 2001. To appear.

