A Model-Driven Architecture for Electronic
Service Management Systems

Giacomo Piccinelli', Wolfgang Emmerich®,
Scott Lane Williams?, and Mary Stearns?

!Department of Computer Science, University College London,
Gower Street, London, WC1E 6BT, UK
{G.Piccinelli, W.Emmerich}@cs.ucl.ac.uk
2HP Software and Solutions Operation,
Pruneridge Avenue, Cupertino, CA 95014, USA

{scott_1l williams, mary_stearns}@hp.com

Abstract. Mainly on the wake of the Web Service initiative, electronic
services are emerging as a reference model for business information tech-
nology systems. Individual applications retain core functions and tech-
nology base, but integration becomes crucial. A business service derives
from the coordination of different business capabilities. The related elec-
tronic service derives from the integration of the different applications
sustaining such capabilities. The effective realisation of an electronic ser-
vice requires explicit modelling and active management of the relations
between business capabilities and technical infrastructure. In this paper,
we propose the notion of Electronic Service Management System (ESMS)
as a framework for modelling and implementing electronic services. The
notion of ESMS is substantiated by a workflow-oriented architecture,
which we mainly derive from the experience of HP Service Composer
and the DySCo (Dynamic Service Composer) research prototype. The
architecture is defined in accordance with the OMGs Model-driven Ar-
chitecture (MDA) principles.

1 Introduction

Electronic services are based on the convergence of the technical and the busi-
ness notions of service [14,20]. On the technical side, standard and technology
initiatives such as Web Services [3] provide a new delivery channel for bod-
ies of knowledge such as the RM-ODP (Reference Model for Open Distributed
Processing) [10]. On the business side, services provide an established unit of
modularisation for business capabilities [4].

The challenge on the business side is to adapt business infrastructure and
models to service-oriented principles. For example, re-engineering internal as-
sets and functions as services. The challenge on the technical side is to provide a
framework for electronic services that is both comprehensive and accessible. The
realisation of an electronic service requires explicit modelling and active manage-
ment of the relations between business capabilities and technical infrastructure.

Models must support abstractions at different levels, and the links between levels
must be explicitly formalised.

In this paper, we propose the notion of Electronic Service Management Sys-
tem (ESMS) as a conceptual and technical framework for electronic services
(Section 2). The framework (Section 5) includes a structural and operational
definition of electronic service, the notion of service composition, and a blueprint
for service implementation. The framework is defined in accordance with OMGs
MDA (Model-driven Architecture) [6] principles, and draws upon OMGs EDOC
(Enterprise Distributed Object Computing) [16] specification. The concepts pro-
posed derive mainly from the experience of HP Service Composer (Sections 3
and 4) and the DySCo (Dynamic Service Composer) [18] research prototype.
DySCo also provided an initial validation platform for electronic service mod-
elling and implementation (Section 6). Related work is discussed in Section 7.
Conclusions and future directions are discussed in Section 8.

2 Electronic Service Management

The definition of electronic service (service for shorthand) adopted for our work is
that of electronic virtualisation of a business service [14]. The notion of electronic
service inherits richness as well as complexity from the business notion of service.
In addition, the electronic dimension introduces new issues in terms of both
service content and provision.

The content of a service refers to the core capabilities enabled by the service.
For example, the content of a freight service refers to the capability of moving
goods from one place to the other. Provision refers to the business channel [8]
between the provider and the consumer of a service. In the example, provision
covers selection, product offer, pricing, and interaction processes that the freight
company applies to the users. Content and provision are complementary aspects
of a service. On the one side, the provision logic depends on the capabilities
that the provider can support. On the other side, the capabilities made available
to consumers depend on the provision logic adopted by the provider. In the
example, the option of delivery tracking might be made available only to selected
users. The example is based on previous research in the freight domain [13], and
will be used throughout the paper.

The notion of Electronic Service Management System (ESMS) that we pro-
pose is centred on a framework for the representation of the operational logic of
an electronic service, the representation of the resources involved in the content
and provision of the service, and the active coordination of such resources in
accordance with the operational logic of the service. An ESMS does provide a
conceptual and technical infrastructure for the development and management
of electronic services. For example, the ESMS can model and access the order-
management system of the freight company. An ESMS does not address the
business definition and engineering of the services. In the example, the ESMS
would not influence the design of a new transport service. Also, an ESMS con-
tributes to the coordination of resources involved in the content and provision of

electronic services. For example, the ESMS can manage the interaction between
the inventory and the order-management systems. With the exception of coordi-
nation facilities, an ESMS does not contribute new resources to be used within a
service. The ultimate goal of an ESMS is to bring together resources that under-
pin an electronic service. The notions of workflow [5,7] and composition [14,16]
are fundamental, both from a conceptual and technical perspective.

The rationale for an ESMS derives from current practices for the creation and
management of electronic services (see Section 3). In the general case, service
providers control resources of different types that are used in different combina-
tions in order to produce different types of service. Different services can depend
on the same resources, and the execution of one service can affect the execu-
tion of other services. For example, the same truck might be used to dispatch
both perishable and non-perishable goods (compatibly with the type of pack-
age). Usage conflicts can easily occur. Moreover, different services can be related
in different ways. Some services can provide complementary capabilities. In the
example, a customer might need to move both perishable and non-perishable
goods. Other services can instead provide alternatives for the same capability.
For example, a repackaging service in combination with the transport service
for non-perishable goods could provide an alternative to the transport service
for perishable goods. The business knowledge developed for traditional service
management must be reflected in the electronic version of a service. Presenting
a provider with a coherent view of resource base, service offer, and the inter-
dependencies between resources and services, ESMSs shorten the gap between
business design and technical implementation of electronic services.

The choice of OMGs MDA as modelling technique for ESMSs reflects the need
for a multi-stage approach in the development of systems for which integration
is a crucial issue. Beyond communication-level protocols, the realisation of an
electronic service depends upon the close integration of different applications
and systems. Moreover, the dynamics of change in the resource base for a service
makes the ability to adapt a fundamental requirement. The MDA provides the
base for effective system integration and re-engineering.

3 Case study

The notion of electronic service management system has found inspiration as well
as validation in the HP Service Composer (HPSC) [9]. The technology frame-
work of the HPSC includes tools and infrastructure components for workflow
and data modelling, workflow execution and management, back-end integration,
and Web-Service life cycle management. Most importantly, the HPSC includes
a methodology for the definition and development of electronic services. The
essence of the methodology is captured in the following steps:

1. Define Public Business Processes. The developer defines the public
workflow that clients will use to interact with the service. The developer
either selects an existing process definition, or defines new ones.

2. Program Web Service Interfaces. The developer generates the Web Ser-
vices Description Language (WSDL) files, which describe the Web Services
associated to the process of step one.

3. Generate Business Objects and Data. The developer generates or cre-
ates connections to the business objects and data that support the service.

4. Define Internal Business Processes. The developer defines the internal
workflow specifying the operational logic for the service. For pre-existing
workflows, the developer builds access points to relevant process nodes.

5. Map Public Interfaces. The public interfaces defined in steps one and two
are mapped to back-end logic from steps three and four. As an example, a
WSDL interface might be mapped to a back-end component for its concrete
implementation.

6. Package the Service. The various components and descriptor files that
make up the service are combined into a deployment unit. The deployment
unit can vary depending on the target platforms.

7. Deploy the Service. The service is deployed onto the various components
of the runtime platform (e.g. application server, workflow engine, ERP— en-
terprise resource panning — system, Web Service infrastructure).

8. Advertise the Services. Once a service has been deployed, it can be offered
to clients. For example, entries for the related Web Services can be added to
a UDDI repository.

9. Monitor Running Services. Graphical tools should provide an end-to-end
view of the service at instance level or as aggregates.

Aligned with industry trends such as ebXML [8] and technology trends such
as Web Services, HPSC is representative of the state-of-the-art in commercial
systems. As all commercial products, HPSC balances innovation with concrete
and immediate applicability. From the study of the HPSC case, we derived gen-
eral requirements (Section 4) for an electronic service management system. In
particular, the methodology for electronic service development gave us indica-
tions about the facilities expected by an ESMS. Most important, some of the
architectural choices in the HPSC provided fundamental indication on the con-
cept of platform for an ESMS (Section 5).

4 System requirements

The most important cluster of requirements derived from the experience with
HP Service Composer concerns the granularity of business resources. An ESMS
must represent the business capabilities enabled by software systems. Using RM-
ODP [10] terminology, an ESMS must expose and leverage the business view
of the different systems and applications sustaining an electronic service. For
example, the ESMS for a freight company should expose to the service designer
the customer interaction logic for the order management system. A homogeneous
and coherent view on business resources is a prerequisite for the engineering of
an electronic service.

Different resources must be integrated at operational, as well as communica-
tion level. Hence, the operational logic of a business resource should be explicitly
modelled and actively managed. In the previous example, the order management
system must be integrated with the payment system. This implies that the two
systems communicate, but also that communication occurs according to a mu-
tually acceptable process. Workflow emerges as a widely accepted model for
the representation of the operational logic of business resources. Workflow also
emerges as a reference model for the representation of the operational logic of
an overall electronic service. In the case of workflow as well as other models and
technologies, standard-based solutions are fundamental.

The distinction between resources and services is quite important. The vision
of resources and services becoming indistinguishable entities sets a long-term
objective. Still, an ESMS must address the peculiarities of resources as well as
services (see Steps 1-5, Section 3). Accessibility, availability, control, and cost
are only some of the aspects to which the distinction applies. While services
and resources should be treated as different entities, an ESMS must address
the inter-category relations. Resources sustain services. In the freight example,
a lorry sustains the transport service. At the same time, services sustain higher-
level resources. In the example, insurance services sustain the operation of the
lorry. An ESMS must also address intra-category relations for services as well
as resources. Services can be composed to create new services. For example,
composing pure transport with packaging and progress notification can produce
a new type of delivery service. Resources may also be used in composition. For
example, different trailers need to be matched with a suitable truck. An ESMS
must explicitly mange the various relations for services and resources.

5 MDA model for ESMSs

The conceptual and technical framework we propose for an ESMS is defined
based on OMGs MDA (Model-Driven Architecture) [6]. Both the EDOC (Enter-
prise Distributed Object Computing) [16] and the RM-ODP (Reference Model
for Open Distributed Processing) [10] specifications constitute the conceptual
foundation for ESMSs. In addition, the EDOC specification provided the tem-
plate for the definition and formalisation of the ESMS model. In line with the
EDOC approach, the purpose of an ESMS model is to provide a reference frame-
work to developers of ESMS systems. In particular, the definition of a UML
Profile provides immediate support for ESMS modelling and design.

After an outline of structural and operational aspects of the ESMS architec-
ture (Section 5.1), we introduce a set of key concepts for an ESMS (Section 5.2).
A metamodel [1] for ESMSs is presented in Section 5.3. The formal semantics of
the proposed metamodel is discussed in Section 5.4.

5.1 Outline of the ESMS architecture

The architectural model we propose for electronic services and related manage-
ment systems is based on the definition of business asset. A business asset is

defined as the composition of one or more business resources and services into a
self-contained operational unit. For example, the composition of a lorry, a driver,
and an insurance service can constitute a single asset capable of moving goods
between different locations.

At the next level of aggregation, the composition and coordination of assets
provide the foundation for business capabilities. A business capability is defined
as the composition of one or more business assets in accordance with an explic-
itly defined business process. For example, the composition of the transportation
asset with assets for packaging, loading and unloading constitute the base for a
delivery capability. A business process coordinating the various assets completes
the capability. One asset can contribute to the realisation of multiple capabilities.
Also, different capabilities can interoperate. The interoperation logic for a group
of capabilities emerges from the business processes of the individual capabilities.
While the relation between capabilities and assets has a master-slave connota-
tion, the interoperation between capabilities is based on a peer-to-peer approach.
For example, capabilities for delivery, insurance and billing may interoperate for
the fulfilment of a customer request. From a business process perspective, the
difference is between the definition of a process coordinating multiple resources
(capability) and the federation of multiple processes (capability group). The
boundaries between assets and capabilities can vary between different business
domains, as well as between different organisations in the same domain. Vari-
ability can occur also in different parts of an individual organisation.

In addition to the operational interdependencies captured by groups, busi-
ness capabilities can functionally complement each other. A cluster captures the
relation between a set of business capabilities and a specific business function or
segment. For example, transport and handling capabilities for perishable goods
can be aggregated into one or more clusters in the segment for perishable freights.
Similarly, capabilities for accounting and payment management can be aggre-
gated into a cluster for finance. One capability should contribute to at least one
cluster. Most important, one capability can contribute to more than one cluster.
Communication handling is an example of capability that is required in different
business functions and segments. Relations and dependencies between clusters
derive mainly from the relations and the dependencies between the capabilities
contained in individual clusters. The new dimension introduced at cluster level
is the distinction between content and provision (ref. Section 2). In the previ-
ous example, the cluster for perishable freights relates to the content of a fright
service. The cluster for finance relates to the provision of the service.

An electronic service emerges from the interoperation between a specific
selection of content and provision capabilities. The selection should include
content-related as well as provision-related capabilities. Aspects of a service such
as information and resource requirements, operational characteristics, and user
interaction derive from the capabilities involved as well as the way such capa-
bilities are set to interoperate. For example, the address for a delivery may be
obtained through the interaction with a profile management capability. Alter-
natively, the information may be obtained by direct interaction with the user.

The realisation of a service S can be based on other services {S1...Sn}. The
services Si are independent services that act as sub-services for S. The different
St can be provided by the organisation that implements S, or by third parties.
Independently from the provider of Si, the connection with S is handled as if
S were a standard user. Similarly to clusters for capabilities, services can be
aggregated in service packs. A service pack includes services that complement
each other in terms of business content. As for sub-services, a service pack can
include services provided by third parties. The rationale is to present users with
comprehensive solutions that leverage the product (services) of an organisation.
A key difference between a composed service and a service pack lays in the re-
sponsibility for the end result. In the case of a composed service, the provider
is responsible for the overall result delivered to the user. In the case of a service
pack, individual providers are responsible for the results of individual services.
Still, the user is responsible for the result of their combined usage.

A service offer is the user view on an electronic service. Service offers include
elements such as price, contractual terms and conditions, interaction processes,
and information on business content. Different users may be presented with
different views on a service, hence with different service offers. Business roles
[5] are central to business processes, hence to business capabilities and services.
In concrete terms, the user view on a service derives from the business roles
assigned to such user.

5.2 Basic concepts for an ESMS

The concept of platform is fundamental for both the modelling and the reali-
sation of an ESMS. Organisations have in place information systems that pro-
vide both modelling abstractions and technology infrastructure for electronic
services. An ESMS must leverage abstractions of business resources and capa-
bilities already present within an organisation. Also, the realisation of an ESMS
must build on top of the technology already present in an organisation. The
reference platform for an ESMS includes elements such as ERP (Enterprise
Resource Planning) systems, database management systems, business process
management systems, and domain-specific as well as function-specific vertical
applications. Integration middleware (e.g. Web Services) already provide uni-
form access to the platform elements. An ESMS provides uniform abstractions
and application-level integration for such elements.

Assets can be abstracted using a basic object-oriented model (e.g. the model
used by Web Services [3]). Taking a progress-tracking system as an example, the
system can be modelled as a Web Service that takes an order number in input
and returns the number of hours before the expected delivery. The majority of
existing information systems expose interfaces based on some form of object-
oriented model. Further assumptions would be useful (e.g. explicit modelling of
interaction flows), but in most cases unrealistic. Capabilities can be abstracted
using a workflow-oriented model (e.g. the model proposed by the Workflow Man-
agement Coalition [5]). Workflow is an established formalism for the definition

of business processes. Moreover, most organisations use workflow management
technology.

The rationale for groups and clusters is to support the modularisation of
the overall business infrastructure underpinning a service. An electronic service
is defined and engineered on top of the business infrastructure provided by ca-
pabilities. Explicit modelling and active management of the relations between
capabilities provide the base for modelling and managing services. In general,
orchestration-oriented coordination of all the capabilities intervening in the re-
alisation of a service is difficult to achieve. For example, explicit workflows cov-
ering end-to-end freight services would reach levels of complexity not acceptable
in practice. Still, orchestration is possible and necessary for specific aspects of a
service. In the freight delivery example, a workflow may coordinate order man-
agement, billing, and credit card handling capabilities to manage payments.
A second workflow may coordinate the actual delivery of the goods. A third
workflow may coordinate the handling of customer queries. The overall service
emerges as a loose form of aggregation of such workflows. From a modelling
perspective, coordination is a specific capability that can be grouped with the
capabilities to be coordinated.

An ESMS requires an information base to manage all the information rele-
vant to the operation of services. The concept of information base mainly en-
compasses uniform data models and access. Uniform data models and formats
enable information sharing between capabilities. Uniform access enables source
transparency. The realisation of an information base can imply proxy access to
existing data sources, as well as database facilities. The information base can be
leveraged for the realisation of loose forms of coordination between capabilities.

5.3 The ESMS metamodel

Figure 1 captures the metamodel for an ESMS. The semantics for most of the
elements in the metamodel can be derived from the discussion in the previous
sections (Section 5.1 and 5.2 in particular). In addition, a formal semantics for the
relation between capabilities, clusters, and services is presented in the following
Section 5.4. For reasons of space, in this section we concentrate on properties,
roles, rights, and responsibilities.

Properties capture different types of meta-information about capabilities.
Such meta-information mainly refers to functional and non-functional require-
ments for a capability. For example, a property for a negotiation capability is to
be usable only with a certain type of customers. A different type of property for
the same capability may be the need to keep certified logs for all communications.
A similar layer is defined for clusters. An example of cluster-level property is the
response time to external customer requests. The relations between properties
for clusters and capabilities are modelled explicitly. In particular, the emphasis
is on the consistency between properties at different levels. For example, the
response time specified for the cluster cannot be lower than the response time
of the slowest capability.

0. service
1..*| -businessContent:String

1." assetBase

0.* ServiceQffer 1.* 0..*| -external:boolean 0.*
servicePack | 0..* 0.* subService
1
Cluster ESMS

-segmentOfFunction:String [1..*
-contentOfProvision:boolean|

1
InformationBase

-

* 11 N
Property 0.. resource 1
-name:String link T
1.% "
0.* — 0..*
o Capability = BusinessAsset
- -businessAction:String group resource[_assetDescriptor:String
0..* 0.~ 0..
— 1.0
- A Informationltem
1 15 g
i WorkflowProcess
BusinessRole 0.4 1.0 - —
—external:boolean — VerticalApplication
-name:String 1.7 0 “VADescriptor:String
1 T+ 11111
h - 1 WfMS
1.* 1.*
: - enacter
Right Responsibility
-name:String -name:String

Fig. 1. Electronic Service Management System (ESMS) — Metamodel.

Rights and responsibilities are fundamental aspects for the notion of services.
In an ESMS, centres of rights and responsibilities are modelled using a notion of
role similar to the one used in RM-ODP [10]. The relation between roles, rights,
and responsibility is subject to change over time. Such relation can be described
by the following function:

map : Rox xS — Ri* X Rex (1)

Given a set of roles (Ro), a set of rights (Ri), and a set of responsibilities (Re),
the function connects roles to sets of rights and responsibilities. In the formula, *
indicates the power set of a set. S captures the notion of state, and the possibility
of dynamic adaptation in the mapping. Ultimately, roles are mapped to software
applications (e.g. modules of an ERP system). Rights and responsibilities are
used to manage the activity of such applications (e.g. validate message flows).

5.4 Formal semantics

A semantic characterisation of the ESMS metamodel is defined in a formal way
by the Labelled Transition System (LTS) [15, 19] partially reproduced in Fig-

IB o CTy—*—=IB = CTy

IB : CT,— =B :CT; (€MD -
IB:{CT,. CT;.. CTy} — w0 B 2 {CT, . CT} . CTy}

IB:CT;—={1=IB CT!

[P 5 CT,— *t Iy TR = T, My B:CT;— =B 2 CTy IBuCTy — ¥ —=IB oCTy' . IB o CTy— ¢ = IR = CTy

IB:{..CTy...CTy... CTy ..} — W b [B' 2 {. Ty .. CTy .. CTyy ...}

IB:CL—F—=IR ::CL] IB ::CL;—Fi IR CL) IB::CL,—Fi iR = CL!

IB:{CT,. . CT, CTy}—*UIE IR = {CT, CT, CTyl and 3tl(teMu{ilandt efky, . k)
(CLMI)

B Lk, ., k) — it IR o CL {ky,)

IB:S, —r—1B 5, IB:{CL ... CLg} —FUl IR = {CL CL;}'

IB 5, —riidsIB 5

IB:{CL.. .. CLg} —PFlils IR 1 {CL . . CLy}

IB 5, 4i oo djrigh — 1P 1= IB 25, {iy oo i i)

Fig. 2. Extract from the definition of the LTS of the ESMS. From the top down:
capabilities, clusters, and services.

ure 2. The LTS formalism provides an operational view of the ESMS, and a
precise definition of the behaviour expected at different levels within the sys-
tem. The focus is on the relations between capabilities, clusters, and services as
described in Section 5.1.

As described in the ESMS model, a capability can be related to more than
one cluster. The transition rules CM1 and CMk (Figure 2) indicate that ca-
pabilities can evolve either individually (CM1) or cooperatively (CMk). The
evolution of a capability (from C to C’) is associated with tangible results (u).
Different results can have different impact on services and service instances.
Some results do not affect any specific service (a). Some results affect a service
as a whole (a(s)). Some results affect specific service instances (a(s,7)). The
results achieved cooperatively (m[i]{j1 ...jx}) are annotated with indications of
the capabilities involved (j; ... jk), and of the coordinating capability ([¢]).

Clusters can evolve autonomously, but most commonly a cluster evolves as a
consequence of the evolution of at least one of the capabilities it depends upon
(CLM1). In the latter case, the result of the cluster evolution derives from the
result of the related capabilities (p(r)). Multiple clusters can evolve as a conse-
quence of the same evolution steps at capability level. As for the capabilities, the
results produced at cluster level can have different degrees of impact on services

and service instances (3, 3(s), 8(s,)). The evolution of services (S) and service
instances (ST) is directly related to the evolution of the clusters, which implies
a degree of indirection with respect to specific capabilities.

The benefits of formal semantics and the use of LTS for describing an ESMS
metamodel are in terms of simulation and analysis made available by tools such
as the LTSA (LTS Analyser) [15]. Initial experiments indicate that the tool is
particularly useful for scenario-based validation of the metamodel. Behavioural
modelling and analysis validate the adequacy of the structural aspects of an
ESMS.

5.5 UML profile

In-line with the methodology defined for the MDA, Tables 1 and 2 outline the
UML profile corresponding to the ESMS metamodel. The immediate benefit
of the profile is that standard UML modelling tools can by used to support
the design ESMSs. In particular, tools can enforce the compliance of specific
ESMS models with the overall metamodel defined in the previous sections. As
an example of the structural constraints included in the profile, the following
OCL (Object Constrain Language) rule captures the need for a property to be
associated with a capability or a cluster:

context Property inv:
-- a Property must be related to at least one Cluster or Capability
self.association.association.connection.participant->

excluding(self) .stereotype->exist(name = "stripe" or name="capability")
Metamodel element|Stereotype Base Class|Parent Tags
Business-Asset BusinessAsset Class N/A assetDescriptor
Business-Role BusinessRole Class N/A name external
Capability Capability Class N/A businessAction
InformationBase |InformationBase [Class N/A
Informationltem |Informationltem |Class N/A
Property Property Class N/A name
Right Right Class N/A name
Responsibility Responsibility Class N/A name
Service Service Class N/A external businessContent
ServiceOffer ServiceOffer Class N/A
ESMS ESMS Class N/A
Cluster Cluster Class N/A businessFunction
Vertical Application | Vertical Application|Class BusinessAsset| VADescriptor
WIMS WIMS Class N/A
WorkflowProcess |WorkflowProcess |Class N/A

Table 1. Stereotypes for ESMS (UML notation: Class Diagram)

Metamodel attribute|Tag Stereotype Type |Mult.|Default
assetDescriptor assetDescriptor BusinessAsset String |1
businessAction businessAction Capability String |1..
businssContent businssContent Service String |1..
contentOrProvision |contentOrProvision |Cluster Boolean|1

external external BusinessRole Boolean|1 false
external external Service Boolean|1 true
name name BusinessRole String |1

name name Property String |1

name name Right String |1

name name Responsibility String |1
segmentOrFunction [segmentOrFunction|Cluster String |1
VADescriptor VADescriptor Vertical Application|String |1

Table 2. Tagged Values for ESMS

The profile is defined as a single package that mainly extends (<<access>>)
the package for the Core metamodel in the UML Foundation. The current version
of the profile addresses the modelling of structural aspects of an ESMS. Enabling
UML-based modelling of the behavioural aspects of an ESMS constitutes ongoing
work.

6 Proof of concept

The definition and characteristics of the ESMS model derive substantially from
the experience of HP Service Composer. The definition takes into account both
the methodology for solution development (Section 3) and the associated toolset.
UML notation is used in the HPSC to enforce the separation between platform-
dependent and platform-independent models of an electronic service. Workflow
notation and technology is used to model and manage the business logic of
a service. The HPSC framework can be directly used to refine a platform-
independent model compliant with the ESMS metamodel into a more detailed
platform-independent model. The HPSC can also be used in the generation of
platform-dependent models for an ESMS.

The ESMS model is also closely related to the DySCo (Dynamic Service
Composer) [18] research prototype. DySCo is the result of a two-year project in-
volving University College London (UK), the University of St. Petersburg (Rus-
sia), the University of Ferrara (Italy), the University of Hamburg (Germany),
and Hewlett-Packard (UK and USA). The objective of DySCo was the develop-
ment of a conceptual and technology framework for the dynamic composition
of electronic services. While lacking direct support for UML, DySCo provides
modelling facilities for workflows and a homogeneous execution platform for an
ESMS.

The ESMS model is currently being used in the context of the EGSO (Eu-
ropean Grid for Solar Observations) [2] project. The model-driven approach to
the architecture of the service provision part of the EGSO grid is expected to

address the need to integrate services based on different provision models and
execution platforms. Each service provider in the EGSO grid will be equipped
with an ESMS. In addition, a specific ESMS federates and manages the service
provisioning capabilities of the overall EGSO grid.

7 Related work

The Enterprise Collaboration Architecture (ECA) defined in the OMGs EDOC
specification [16] provides a comprehensive framework for the modelling of en-
terprise systems. The ESMS architecture can be considered at the same time a
vertical extension and an instance of the ECA. On the one side, an ESMS is an
enterprise system that can be designed based on the ECA. On the other side,
an ESMS has peculiarities that are not explicitly addressed by the ECA. With
reference to the conceptual framework for the MDA [6], we envision a series of
refinements (PIM PIM) before reaching the level of detail at which the ECA
can be effectively used. Similar considerations apply for the Reference Model for
Open Distributed Processing (RM-ODP) [10], which is also closely related with
the ECA.

Most technology and conceptual frameworks for electronic services [12] focus
on Web-Service-based automation of the front-end of individual services. Web
Services [3,4] constitute the reference model for access to and basic orchestration
of business resources. We envision Web Services playing a fundamental role in
the realisation of an ESMS. Still, a more comprehensive approach is needed
for the realisation and operation of business-level services. An example of the
issues involved in the realisation of business-level service is HiServs Business Port
[11]. FRESCO (Foundational Research on Service Composition) [17] provides an
example of second-generation framework for electronic service management. The
focus of FRESCO is on the provision aspects of services.

8 Conclusions

An ESMS (Electronic Service Management System) provides the conceptual and
technology framework for the aggregation and coordination of business resources
towards the realisation of a complete electronic service. In particular, the real-
isation and operation of a service requires close integration between different
systems. A model-driven approach to ESMSs helps tackling the integration is-
sue at multiple levels.

In this paper, we propose a general architecture for ESMSs. The architecture
derives from the specific experience of HP Service Composer, but it is also closely
related to concepts in OMGs EDOC (Enterprise Distributed Object Computing)
specification and the RM-ODP (Reference Model for Open Distributed Process-
ing). The architecture is captured as an UML-based metamodel for which a UML
profile is also defined.

The architectural model proposed has been applied to the DySCo (Dynamic

Service Composer) research prototype, and it is currently been used in the EGSO
(European Grid of Solar Observations) grid.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Booch G, Jacobson I., Rumbaugh J.: The Unified Modeling Language User Guide.
Addison-Wesley, 1998.

Bentley R.D.: EGSO — The European Grid of Solar Observations. In Proc. Euro-
pean Solar Physics Meeting, ESA Publication SP-506, 2002.

Cerami E.: Web Services Essentials. OReilly and Associates, 2002.

Clark M. et Al.: Web Services Business Strategies and Architectures. Expert Press,
2002.

Fisher L. (Ed.): Workflow Handbook. Workflow Management Coalition and Future
Strategy Inc., 2002.

Frankel D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-
ing. John Wiley and Sons, 2003.

Georgakopoulos D., Hornick M.F., Sheth A.P.: An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, Kluwer Academic, Vol. 3 No. 2, 1995.

Gibb B., Damodaran S.: ebXML: Concepts and Application. John Wiley and Sons,
2002.

HP: HP Service Composer User Guide. Hewlett-Packard Company, 2002.
ISO/IEC, ITU-T: Open Distributed Processing — Reference Model — Part 2: Foun-
dations. ISO/IEC 10746-2. ITU-T Recommendation X.902.

Klueber R., Kaltenmorgen N.: eServices to integrate eBusiness with ERP systems
— The case of HiServs Business Port. In Proc. Workshop on Infrastructures for
Dynamic Business-to-Business Service Outsourcing (CAISE-ISDO), 2000.

Kuno H.: Surveying the E-Services Technical Landscape. In Proc. Workshop on
Advance Issues of E-Commerce and Web-Based Information Systems (WECWIS),
IEEE, 2000.

Linketscher N., Child M.: Trust Issues and User Reactions to E-Services and E-
Marketplaces: A Customer Survey. In Proc. DEXA Workshop on e-Negotiation,
2001.

Marton A., Piccinelli G., Turfin C.: Service Provision and Composition in Virtual
Business Communities. In Proc. IEEE-IRDS Workshop on Electronic Commerce,
Lausanne, Switzerland, 1999.

Magee J., Kramer J.: Concurrency: State Models and Java Programs. John Wiley
and Sons, 1999.

OMG: UML Profile for Enterprise Distributed Object Computing Specification.
OMG Final Adopted Specification ptc/02-02-05, 2002.

Piccinelli G., Zirpins C., Lamersdorf W.: The FRESCO Framework: An Overview.
In Proc. Symposium on Applications and the Internet (SAINT), IEEE-IPSJ, 2003.
Piccinelli G., Mokrushin L.: Dynamic e-Service Composition in DySCo. In Proc.
Workshop on Distributed Dynamic Multiservice Architecture, IEEE ICDCS-21,
Phoenix, Arizona, USA, 2001.

Plotkin G.D.: A structural approach to operational semantics. Technical Report
DAIMI-FN-19, Department of Computer Science, University of Aarhus, 1981.

20. Sillitti A., Vernazza T., Succi G.: Service Oriented Programming: a New Paradigm
of Software Reuse. In Proc. of the 7th Int. Conference on Software Reuse, LNCS,
2002.

