
Deadlock Detection in Distributed Object Systems

Nima Kaveh and Wolfgang Emmerich
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, UK

{n.kaveh|w.emmerich}@cs.ucl.ac.uk

ABSTRACT
The behaviour of a distributed system is largely determined
by the use of synchronization primitives and threading poli-
cies of the underlying middleware. The inherent parallel
nature of distributed systems may cause liveness problems,
such as deadlocks and livelocks. An increasing number of
distributed systems is built using object middleware. We
exploit the fact that modern object middleware offers only
a few built-in synchronization and threading primitives by
suggesting UML stereotypes to represent each of these prim-
itives in distributed object design. We define the semantics
of the stereotypes using a process algebra. We use that
semantics to translate UML diagrams into behaviourally
equivalent process algebra representations and can then use
model checking techniques to find potential deadlocks. The
paper also shows how the model checking results can be re-
lated back to the original UML diagrams.

Keywords: Model Checking, Object Middleware, Process
Algebra, UML

1. INTRODUCTION
The advances in networking technology are increasingly
making the deployment of distributed system architectures
a popular, sometimes even an essential option. The main
advantages of distributed system architectures include in-
creased overall system availability through better fault tol-
erance, parallel execution of an application on multiple hosts
and a simplification of scalability.

The direct use of networking primitives or proprietary tech-
nologies for the development of distributed applications is
no longer a viable option. Such approaches stifle applica-
tion maintainability and ease of interoperability with other
applications developed with other proprietary technologies.
Instead, open object and component middleware technolo-
gies, such as CORBA [13] and Enterprise Java Beans [12],
are rapidly becoming the preferred approach for the devel-
opment of distributed systems.

These middleware approaches attempt to hide the complex-
ity of distribution and aspire to provide software engineers
with the ability to invoke operations on remote hosts in the
same way as they would invoke local methods. While they
succeed in many respects, there are some fundamental dif-
ferences between local and remote method invocations [3].
One such difference is the inherent parallel execution of ob-
jects or components that reside on different machines. A lo-
cal method call can recursively call itself, possibly indirectly
via some other methods, and will not cause any problems as
long as the recursion terminates at some stage. Recursion
of distributed objects may however cause deadlocks.

In this paper, we investigate deadlock detection in-depth.
We show that particular combinations of synchronization
and threading policies may cause liveness problems in dis-
tributed systems that are built with object and component
middleware. This is demonstrated through an example sce-
nario. We aim to support the software engineer in detecting
deadlocks in their distributed object designs. We exploit
the fact that object and component middleware only offers
a fixed number of client-side synchronization primitives and
server-side threading policies. We suggest UML stereotypes
to represent each of these primitives in distributed object
designs. We define the semantics of the stereotypes using a
process algebra. We use that semantics to translate UML
diagrams into behaviourally equivalent process algebra rep-
resentation and can then use model checking techniques to
detect violations of liveness properties. We show how ex-
isting model checking tools can be applied to the generated
process algebra for the detection of deadlocks. Finally, we
demonstrate how model checking results can be related back
to the original UML design model.

In Section 2, we present a scenario that exemplifies the prob-
lem. This scenario is used throughout the paper to demon-
strate our approach. Section 3 gives details of how UML
stereotypes are used to model the identified synchronisation
characteristics of a given system and includes UML models
of the example scenario. In Section 4, we define the seman-
tics for the identified synchronization primitives and thread-
ing policies using a process algebra. Section 5 shows how the
provided semantic definitions are used to generate a process
algebra specification of UML statecharts and class diagrams.
Section 6 discusses how we detect potential synchronization
flaws in the given UML models using compositional reach-
ability analysis [1]. An overview and comparison to related
research is given is Section 7.

2. MOTIVATING SCENARIO
In order to aid convey and demonstrate the problem that
we are addressing we present an example scenario for which
we envisage the use of a distributed object or component
middleware. This scenario is used throughout the paper to
show how the system is modelled during the different stages
of our approach and explain the results we obtain.

Trader A Update

Trader B Update

Trader C Update

Notification
Server

Trader C

Trader B

Trader A

EquityServer

Figure 1: Market Trading Scenario

Figure 1 depicts a stock trading system, its main compo-
nents and the communication channels between the compo-
nents. To keep the scenario simple we concentrate on en-
tities responsible for communication. We do not make any
assumption about the underlying setup of the system. The
three types of components are connected by a network and
communicate via object-oriented middleware.

Market traders carry out transactions and monitor fluctua-
tions in various stock prices. Triggered by changes in prices
or external requests from customers to deal in particular
stock, a Trader will enter a new transaction and send it to
the EquityServer. Figure 1 shows three traders sending up-
date¡s to the EquityServer. Note that the Trader entity could
in reality consist of multiple components but for all intents
and purposes of this scenario it is viewed as a simple entity
that can send and receive information.

Upon receipt of trading information the EquityServer will
carry out specific computations based on the received data
and other sources, such as stock profiles stored in a database.
At a certain point the EquityServer will complete a trans-
action and use this data to feed new price information to
all traders. To do so, the EquityServer sends an updated
price to the NotificationServer, which, in turn, publishes
the price to registered traders. The delegation of the task
to the notifications server simplifies the EquityServer and
minimises coupling. We assume that all traders have regis-
tered with the NotificationServer during initialisation and
that communication channels are already established.

Communication between all entities in the system follows
the push model. In this model information flows in one di-
rection and is initiated by the source. In our example the
sink end always reacts by pushing information to the next

entity. This creates recursion, whereby a Trader compo-
nent calls an operation from the EquityServer, which calls
an operation from the NotificationServer and this, in turn
eventually calls back the Trader to notify a new price. If
all these operations are called in a synchronous manner and
servers are single threaded, we will reach a situation where
all the components are blocked waiting the reception of in-
formation from one another, thus entering a deadlock. The
occurence of this deadlock and systematic ways of detecting
it serve as the motivation for our research.

3. MODELLING OBJECT INTERACTION
We use the Unified Modelling Language [15] for designing
the static export interfaces of distributed object types and
their dynamic object interactions. UML is widely accepted
and deployed in industry and we hope to leverage its popu-
larity to bring our research results into industrial practice.

Initially we chose UML class and interaction diagrams to
model a given system [7]. This resulted in the system be-
ing represented at a type level of abstraction through class
diagrams and an instance level of abstraction through inter-
action diagrams. The use of interaction diagrams limited us
in obtaining only one specific interleaving of interactions be-
tween objects. This clearly did not take full advantage of the
exhaustive search powers of model checking techniques. In
this paper, we use UML statechart diagrams [5] rather than
interaction diagrams to model the dynamic behaviour of dis-
tributed objects. Statecharts maintain the ability to model
dynamic behaviour but because they model the behaviour
at a type-level of abstraction they also hold all possible in-
terleaving of object interactions in a given system.

The behaviour of distributed object interactions is governed
by synchronization and threading policies. We note that
current distributed object and component middleware sys-
tems support a fixed number of such synchronization and
threading primitives. OMG’s CORBA, Microsoft’s Compo-
nent Object Model (COM), Enterprise Java Beans (EJB)
and Java Remote Method Invocation (RMI) all support
synchronous invocations, which block the client until the
server returns the result. CORBA also supports deferred
synchronous, oneway and asynchronous invocations. Server
objects, similarly, only support a small number of threading
models. CORBA’s Portable Object Adapter defines single-
threaded behaviour, which would force a client to wait while
a server object is busy processing another request and multi-
threaded behaviour, which is often implemented by spawn-
ing new threads for requests or by selecting a thread from
a thread pool. RMI supports directly only single threaded
behaviour, but server programmers can use Java’s thread-
ing primitives to spawn new threads when requests arrive.
As the synchronization and threading behaviour is of great
importance for the overall design of a distributed object
system, we believe that they should be captured in static
and dynamic design diagrams. CORBA provides a superset
of the synchronization primitives and threading policies of
COM, EJB and RMI. We subsequently define stereotypes
for all the primitives that CORBA provides. These prim-
itives can then be used during the design of non-CORBA
objects, too. Our approach therefore caters for design and
deadlock detection of all applications based on mainstream
object middleware.

The 〈〈Synchronous〉〉 stereotype represents a synchronous
request primitive, while the 〈〈DeferredSynchronous〉〉
stereotype is used to indicate a deferred-synchronous re-
quest being made on a server object. The 〈〈Asynchronous〉〉
stereotype is used to indicate an asynchronous client re-
quest, and a 〈〈OneWay〉〉 stereotype represents a oneway
request. Similarly on the server-side, we defined the
〈〈singleThreaded〉〉 stereotype to indicate that a particu-
lar server object uses a single threaded policy to deal with
incoming service requests and the 〈〈multiThreaded〉〉 stereo-
type shows that the server object handles multiple concur-
rent service requests by using multiple threads. These prim-
itives and policies will be detailed in Section 4.

NotificationServer
receiveEquityData()
addTrader()
removeTrader()

<<singleThreaded>>

EquityServer
receiveTraderUpdate()

<<singleThreaded>>

1..1

1..1

+notifier 1..1

+controller 1..1

Trader

receiveServerUpdate()

<<singleThreaded>>

0..n1..1

+myUpdateServer

0..n

+traders

1..1

1..1

0..n

+traders

1..1

+myEquityServer 0..n

Figure 2: Class diagram of Market Trading Scenario

Server-side threading policies are defined statically for ob-
ject types. We therefore model those in the class diagrams
that capture the export interfaces of object types. As an ex-
ample, Figure 2 shows a class diagram of the equity trading
system. Each of the classes correspond to one of the three
entities in the example scenario of Section 2. Each class
is annotated with the 〈〈singleThreaded〉〉 stereotype, indi-
cating that they handle one incoming request at a time. As
discussed above, this is the default threading policy in main-
stream middleware. Each class has a method responsible
for receiving stock related information. This method is re-
motely invoked by an object of another class in order to push
information to the recipient. Method receiveTraderUpdate()

in the EquityServer class, for instance, is invoked remotely
by an instance of the Trader class in order to pass any trading
activity reports. Likewise, method receiveServerUpdate() of
Trader is invoked by an object of type NotificationServer to
pass the EquityServer updates.

Synchronization of remote operation invocations are a dy-
namic aspect and as such we define them in state diagrams.
We use the above synchronization stereotypes in those tran-
sitions of statecharts whose actions correspond to remote
operation invocations. The statechart of the EquityServer

in Figure 3 initially starts in the idle state. When its op-
eration is receiveTraderUpdate requested, it moves to state
update. The action notifier.receiveEquityData that takes
place whilst moving from update to updates completed is
marked with a <<synchronous>> stereotype. This corresponds
to the receiveEquityData method of the NotificationServer

class in Figure 2. Notice that the action name contains the
name of the association used in the class diagram. From
this information we can deduct that an EquityServer ob-

ject will request a remote synchronous operation from a
NotificationServer object. Finally, the EquityServer goes
back to the idle state causing a reply to be sent back to the
Trader who sent the updates.

idle

update

updates
completed

 / notifier.receiveEquityData()
<<synchronous>>

 / reply

receiveTraderUpdate

File: E:\My Documents\PPP.mdl 20:25:23 15 March 2001 Statechart Diagram: EquityServer Page 1

Figure 3: EquityServer Statechart

Figure 4 shows how the NotificationServer can register
and unregister traders whilst in the idle state. Upon
reception of update instructions from the EquityServer it
moves into the sending state. It then continually sends
updates via the traders.receiveServerUpdates action, un-
til all traders have been notified. This action is marked
with the <<synchronous>> stereotype. Similarly to the
EquityServer case, we can deduce that instances of the
NotificationServer class invoke the remote synchronous
method receiveServerUpdates on Trader objects. The object
re-enters the idle state upon updating all traders.

idle

sending

addTrader

removerTrader

/ traders.receiveServerUpdates()
<<synchronous>>

receiveEquityData

 reply

Figure 4: NotificationServer Statechart

Figure 5 shows the statechart for the Trader class. A trader
processes a new transactions whilst in the trading state. It
then sends the results of the trade to the EquityServer us-
ing the myEquityServer.receiveTraderUpdate action. This ac-
tion is marked with a <<synchronous>> stereotype, indicating
that the invocations made to instances of type EquityServer

are synchronous. After replying to the receiveTraderUpdate

event the object returns to state idle.

4. SEMANTICS OF STEREOTYPES
Process algebras represent mathematically rigorous frame-
works for modelling concurrent systems of interacting pro-
cesses. We have chosen process algebras for defining a formal
semantics of our stereotypes over alternatives such as deno-
tational and axiomatic models due to their more powerful
model of concurrency. Process algebras allow for hierarchi-
cal description of processes, a valuable feature for compo-
sitional reasoning, verification and analysis. The particular

idle

trading

enterNewTrade

trade
completed

 / myEquityServer.receiveTraderUpdate
<<synchronous>>

update
received

receiveServerUpdate

 / refreshDisplay

File: E:\My Documents\PPP.mdl 18:05:44 15 March 2001 Activity Diagram: Logical View / wrong one Page 1

Figure 5: Trader Statechart

algebra that we have chosen for defining the semantics of the
stereotypes are Finite State Processes [9] (FSP). We chose
FSP because it is well-supported with a model checking tool.

There are two key concepts commonly used in our FSP spec-
ification of a system’s synchronous primitive, namely syn-
chronised actions and parallel composition. Each FSP pro-
cess is composed of a set of actions that occur in a specified
and fixed order. Parallel composition is used to describe a
system with multiple concurrent processes, whereby the ac-
tions of the processes are interleaved. Therefore, whilst the
actions of individual processes still occur in a fixed order,
we obtain many different execution traces of the composite
process. Note, that this directly reflects the concept of con-
current states in UML statecharts. Processes can be forced
to perform actions simultaneously in a lock-step fashion via
synchronized/shared actions. Actions with the same name
are executed at the same time; this achieves synchronisa-
tion between concurrent processes. Actions with different
names can be synchronized using the FSP relabelling mech-
anism. These concepts are demonstrated in the following
subsections.

4.1 Synchronization Primitives
A synchronous request blocks the client object until the
server object processes the request and returns the results of
the requested operation. This is the default synchronization
primitive not only in CORBA, but also in RMI and COM.
Figure 6 shows the FSP specification for a synchronous call.
The Object Adapter (OA) intermediates between the client
and the server process. The OA process receives requests
sent by the Client process and relays them onto the Server
process. SynchInvocation is a composite process made up of
the parallel composition of the Client, Server and OA pro-
cesses. It uses relabelling to synchronize the four actions of
the OA process with the relevant actions in the Client and
Server process. For example the sendRequest action of the
Client process is synchronised with OA’s receiveRequest ac-
tion, similarly the OA’s relayReply is synchronised with the
Server’s sendReply action. This simply indicates that a client
must have sent a request before the server sends back a re-
ply. The overall execution of the composite process follows
the order set in the OA process, therefore implementing a
synchronous call.

With an asynchronous request control is returned to the
client as soon as the invocation has been sent. Results of
the invocation are returned to the client by a call-back mech-
anism invoked by the server. This means that the onus of
directing the results to the client is now on the server. Fig-

Client=(sendRequest-> receiveReply-> Client).

OA=(receiveRequest->relayRequest->
receiveReply->relayReply->OA).

Server=(receiveRequest->processRequest->
sendReply->Server).

||SynchInvocation=(client:Client || serverOA:OA
||server:Server)

/{client.sendRequest/serverOA.receiveRequest,
client.receiveReply/serverOA.relayReply,
server.receiveRequest/serverOA.relayRequest,
server.sendReply/serverOA.receiveReply}.

Figure 6: Synchronous Stereotype Semantics

ure 7 shows the FSP specification for the asynchronous invo-
cation method. Similarly to the previous case the OA process
mediates the synchronization of the Client and Server ac-
tions. However in this case, the client can engage in action
doOtherWork infinitely often before it receives a call-back in-
vocation from the server, via the OA. This is made possible
by the FSP choice operator “|”, which introduces a non-
deterministic method of executing alternate actions.

Client=(sendRequest->OtherExecutions),
OtherExecutions=(doOtherWork->OtherExecutions |

callBack->receiveReply->Client).

OA=(receiveRequest->relayRequest->
receiveReply->relayReply->OA).

Server=(receiveRequest->processRequest->
sendReply->Server).

||ASyncInvocation=(client:Client || serverOA:OA
||server:Server)

/{client.sendRequest/serverOA.receiveRequest,
client.callBack/serverOA.relayReply,
server.receiveRequest/serverOA.relayRequest,
server.sendReply/serverOA.receiveReply}.

Figure 7: Asynchronous Stereotype Semantics

Deferred synchronous invocations do not block the client im-
mediately. The client object can engage in other actions for
a duration of time. After the duration the client polls the
server object to check for the availability of results. The
polling is a blocking method causing the client to hold un-
til a reply is sent from the server. Figure 8 shows the FSP
specification for the deferred synchronous method invoca-
tion. The pre-polling duration has been set to 5 time steps.
The Client process increments an internal timer and checks
to see if it is at the polling threshold each time. After this
point the specification behaves like a synchronous invocation
and blocks until it receives a reply from the server.

A oneway method invocation does not block because there
is no reply by the server. This offers an inexpensive way of
invoking methods but offers no guarantees or indications as
to whether the request has been received or processed by
the server.

const WaitTime=5
range T = 0..WaitTime

Client = (sendRequest->Client[0]),
Client[i:T]= if (i<WaitTime)

then (timeStep[i+1]->Client[i+1])
else (receiveReply -> Client).

OA=(receiveRequest->relayRequest->
receiveReply->sendReply->OA).

Server=(receiveRequest->processRequest->
sendReply->Server).

||DeferredSynchInvocation=(client:Client||
serverOA:OA|| server:Server)

/{client.sendRequest/serverOA.receiveRequest,
client.receiveReply/serverOA.sendReply,
server.receiveRequest/serverOA.relayRequest,
server.sendReply/serverOA.receiveReply

}.

Figure 8: Deferred Synchronous Stereotype Seman-
tics

4.2 Threading Policies
The primitives described in Section 4.1 were demonstrated
in combination with a single threaded policy. The multi-
threaded policy, expressed using the <<multiThreaded>> ste-
reotype, allows for handling multiple requests simultane-
ously. There are several different methods of implementing
this policy but all use the common principle of delegating the
request handling to threads. Threadpools are a common im-
plementation method, whereby new requests are delegated
to threads drawn from a threadpool. Once the request has
been processed the thread is returned to the threadpool and
is declared available again. If all threads are busy at the
time of a request arrival the request is put into a queue. In
the situation where the queue is also full the request is dis-
carded. Figure 9 defines the semantics of a server that uses
a thread pool policy. The total number of slave threads and
queue slots are specified as constants at the beginning. The
server-side is composed of four processes, representing the
thread, threadpool, queue and the server. All server-side
processes are composed with the same label so as to syn-
chronise their action. The Server process uses two variables
to keep track of the current size of the queue and the num-
ber of threads currently in use. The server ReceiveRequest

action indicates the arrival of a client request. If there are
any available threads the synchronised action getFreeThread

is taken which starts the ThreadPool process. This further
causes the Thread process to be initiated using the shared
delegateTask action. Once the request has been serviced
the responsible Thread process engages in a ReceiveReply. If
the number of used threads has not reached the maximum
the server attempts to add the message to the queue. This
addToQueue succeeds if there are free queue slots left, other-
wise the message is being rejected.

5. GENERATION OF FSP
We observe that different combination of these primitives
determine the synchronisation behaviour of their respective
object implementations and thus the overall system. UML
design models annotated with stereotypes defined in Sec-
tion 4 can be broken down into a set of synchronisation

const PoolSize=16
const QueueSize = 10
range T=0..PoolSize
range Q=0..QueueSize

OA=(receiveRequest->relayRequest->
receiveReply->sendReply->OA).

Thread=(delegateTask->taskExecuted->sendBackReply
->Thread).

ThreadPool = ThreadPool[0],
ThreadPool[i:T]=
if (i<PoolSize) then

(getFreeThread->delegateTask->ThreadPool[i+1]
| taskExecuted -> ThreadPool[i-1])

else (noFreeThreads -> ThreadPool[i]).

Queue = Queue[0],
Queue[j:Q]=
if(j<QueueSize)then(inspectQueue->
if(j>0) then (dequeueMessage->Queue[j-1]

| addToQueue[j]->Queue[j+1])
else(addToQueue[j]->Queue[j+1]))
else (rejectMessage -> Queue[j]).

Server = Server[0][0],
Server[i:T][j:Q]=(receiveNewRequest->
if(i<PoolSize) then

(getFreeThread->Server[i+1][j])
else (noFreeThreads->
if(j<QueueSize)then

(addToQueue[j]->Server[i][j+1])
else (rejectMessage->Server[i][j]))).

||MTSystem=(oa:OA||server:Server||
server:ThreadPool||server:Thread||
server:Queue)

/{server.receiveNewRequest/oa.relayRequest,
server.sendBackReply/oa.receiveReply}.

Figure 9: Semantics of Multi-Threaded Stereotype

primitive and threading policy combinations. As demon-
strated in Section 4 we have developed a formal mapping for
the semantics of each combination in the form of a process
algebra. Therefore, by composing the derived FSP building
blocks, we can generate a formal specification of the entire
UML model.

We are currently developing a CASE tool to automate the
generation of FSP from input UML models. The XML
Metadata Interchange (XMI) [14] was chosen as the input
format to the tool. XMI enables the encoding of MOF com-
pliant meta models in XML and includes a type definition
for representing UML models. All of the main modelling
tools available have an XMI export facility. Moreover, the
hierarchical Document Object Model representation of XMI
documents provides an intuitive method of information ex-
traction. Using the XMI document the CASE tool creates an
object hierarchy of the UML elements present in the model.
This hierarchy is formed in accordance with the UML meta-
model specification. By traversing this object hierarchy we
obtain the synchronization primitives and threading poli-
cies being used as well as the combinations in which they
are used.

TRADER = (enterNewTrade->Trading),
Trading = (myEquityServer.receiveTraderUpdate -> receiveInvocationReply -> TradeCompleted),
TradeCompleted = (receiveServerUpdate-> UpdateReceived),
UpdateReceived = (refreshDisplay->TRADER).

OA=(receiveRequest->relayRequest->receiveReply->relayReply->OA).

EQUITYSERVER = (receiveTraderUpdate -> Update),
Update = (notifier.receiveEquityData-> receiveInvocationReply ->UpdatesCompleted),
UpdatesCompleted = (reply -> EQUITYSERVER).

NOTIFICATIONSERVER = (addTrader->NOTIFICATIONSERVER | removeTrader->NOTIFICATIONSERVER
| receiveEquityData->Sending),

Sending = (traders.receiveServerUpdates->receiveInvocationReply->Sending
| finishedNotificationCycle->NOTIFICATIONSERVER).

||TradingSystem=(traderA:TRADER || traderB:TRADER || serverOA:OA || traderOA:OA || notifierOA:OA
||server:EQUITYSERVER || notifier:NOTIFICATIONSERVER)

/{
traderA.myEquityServer.receiveTraderUpdate/serverOA.receiveRequest,
traderA.receiveInvocationReply/serverOA.relayReply,
traderB.myEquityServer.receiveTraderUpdate/serverOA.receiveRequest,
traderB.receiveInvocationReply/serverOA.relayReply,
server.receiveTraderUpdate/serverOA.relayRequest,
server.reply/serverOA.receiveReply,

server.notifier.receiveEquityData/notifierOA.receiveRequest,
server.receiveInvocationReply/notifierOA.relayReply,
notifier.receiveEquityData/notifierOA.relayRequest,
notifier.finishedNotificationCycle/notifierOA.receiveReply,

notifier.traders.receiveServerUpdates/traderOA.receiveRequest,
notifier.receiveInvocationReply/traderOA.relayReply,
traderA.receiveServerUpdate/traderOA.relayRequest,
traderA.refreshDisplay/traderOA.receiveReply,
traderB.receiveServerUpdate/traderOA.relayRequest,
traderB.refreshDisplay/traderOA.receiveReply}.

Figure 10: FSP specification of the motivating example

Figure 10 shows the generated FSP specification for the
overall trading system. Each statechart described in Sec-
tion 3 is mapped onto an FSP process. Furthermore, each
of the states of the statecharts is modelled as a local process
within its main process. Actions resulting from a transi-
tion from a state are modelled as FSP actions within each
local process. The OA (Object Adapater) process operates
in the same fashion as described in Section 4, synchroniz-
ing the actions for relaying requests and relaying back re-
sults of the invocation. Three instances of the OA process,
serverOA, notifierOA and traderOA, are composed into the
system since each of the three entities receive method in-
vocations. This is made possible by using the FSP process
labelling mechanism, which distinguishes the actions of in-
stances of the same process from one another. If an action
relates to a remote method invocation it is followed by a
receiveInvocationReply action. For example, the local pro-
cess Update of the EQUITYSERVER process in Figure 10 con-
tains an action that corresponds to a remote method invo-
cation that causes updates to be sent to a trader. The fol-
lowing receiveInvocationReply action is synchronized with
the notifierOA’s relayReply. This forces the TRADER pro-
cess to block until the notifierOA process has received a
reply from the NOTIFICATIONSERVER process via the action
finishedNotificationCycle. In this specification only two
traders are modelled due to space restrictions for this pa-
per.

6. MODEL CHECKING RESULTS
At this stage we have obtained a FSP specification of the en-
tire UML model that we are analysing. The model checker
included in the labelled Transition System Analyser (LTSA),
which supports FSP [9] computes a labelled transition sys-
tem of that specification, taking into considerations all pos-
sible interleaving of actions between instances, in our ex-
ample, of the EquityServer, the NotificationServer and the
Trader class. The LTSA describes components of a specifi-
cation as Labelled Transition Systems [11] . The LTSA tool
performs a compositional reachability analysis [1] to carry
out an exhaustive search for violations of desired safety and
liveness properties.

A deadlock is detected by searching for reachable states with
no outgoing transitions, that would make the program stop
once it entered one of these states. If a deadlock is detected,
the LTSA produces a trace of actions that lead to the dead-
lock. Figure 11 shows the LTSA safety check output for the
FSP code of the example shown in Figure 10. In this trace
the trader process completes a new transaction and pushes
the results to the EquityServer via a remote method invo-
cation, blocking until it receives back a reply. Before pro-
cessing the Trader request the EquityServer process pushes
existing update information to the NotificationServer and
blocks until it receives a reply. Upon receipt of the update
information the NotificationServer makes blocking remote

invocations of its own to the Trader process, before reply-
ing to the EquityServer. This last invocation completes a
deadlock ring as all three processes are blocked waiting for
one another. There are 19200 states in the state space.
This grew to 96000 states when modelling three concurrent
traders and 480000 states when considering 4 traders.

Compiled: TRADER
Compiled: OA
Compiled: EQUITYSERVER
Compiled: NOTIFICATIONSERVER
Composition:
TradingSystem=traderA:TRADER||traderB:TRADER||

serverOA:OA||traderOA:OA||notifierOA:OA||
server:EQUITYSERVER||
notifier:NOTIFICATIONSERVER

State Space:
5 * 5 * 4 * 4 * 4 * 4 * 3 = 19200
Analysing...
Depth 8 -- States: 25

Transitions: 78
Memory used: 3287K

Trace to DEADLOCK:
traderA.enterNewTrade
traderA.myEquityServer.receiveTraderUpdate
traderB.enterNewTrade
server.receiveTraderUpdate
server.notifier.receiveEquityData
notifier.receiveEquityData
notifier.traders.receiveServerUpdates

Analysed in: 210ms

Figure 11: LTSA safety check output

We generate UML sequence diagrams from the property vi-
olation trace from the LTSA tool, to give feedback to the de-
veloper about potential problems in their design. Sequence
diagrams allow us to show a specific set of interactions that
can lead to a property violation in a presentable manner.
Figure 12 is a sequence diagram derived from the deadlock
trace detected by the LTSA. Local method calls are not
shown as they have no effect on the inter-object interac-
tions. The shape of the arrow heads are a visual sign of
the <<synchronous>> stereotype. Note, how the name of the
remote actions in Figure 11 contains the name of the asso-
ciations defined in the class diagram of Figure 2.

traderA : Trader server :
EquityServer

notifier :
NotificationServer

receiveTraderUpdate

receiveEquityData

receiveServerUpdates

Figure 12: Sequence diagram showing deadlock

To conclude the motivating scenario we have been analysing,
Figure 13 shows a new statechart for the Trader class. This
is a composite state made up of two concurrent subma-

chines, Trading and Updating. The Updating submachine
deals with receiving updates from the NotificationServer,
whilst the Trading submachine engages in trading transac-
tions and pushes the results to the EquityServer. This new
design allows a trader to wait for the EquityServer reply
whilst receiving updates from the NotificationServer, thus
freeing the system from deadlock.

idle

trading

trade
completed

idle

trading

trade
completed

/ myEquityServer.
receiveTraderUpdate

<<synchronous>>

enterNewTrade

/ refreshDisplay

idle

update
received

receiveServerUpdate/ refreshDisplay

Trading Displaying

Figure 13: Concurrent Trader Statechart

7. RELATED WORK
Process algebra representations, such as CSP [6], CCS [10],
the π-calculus [11] or FSP [9] can be used to model the con-
current behaviour of a distributed system. Tools like the
Concurrency workbench [2] or the Labelled Transition Sys-
tem Analyzer available for FSP can be used to check these
models for violations of liveness or safety properties. The
problem with both these formalisms and tools is, however,
that they are difficult to use for the practitioner and that
they are general purpose tools that do not provide built-
in support for the synchronization and activation primitives
that current object middleware supports.

In [4], CCS is used to define the semantics of CORBA’s
asynchronous messaging. The paper, however, does not take
into account that synchronization behaviour alone is insuffi-
cient for model checking as deadlocks can be introduced and
resolved by the different threading policies that the object
adapters support.

The work done in [8] is similar to our approach in that a
formal specification is generated from UML design models.
One of the assumptions made, however, is that each instance
of the modelled class runs in a seperate process. This is not
the case for object middleware as many server objects can
run in the same process. Our stereotypes for single and
multi-threaded server-side execution are closer to industrial
reality.

In [16], FSP specifications are generated from an extended
version of Message Sequence Charts (MSC) for the synthesis
of system behaviour models. Whilst scenario-based specifi-
cation is a suitable method for checking and communicating
the key scenarios of a system it cannot be applied to detailed
design models for the purposes of thorough validation and
verification. The large number of key scenarios in a typical
industrial case are too large to make this a scalable solution
for design verification.

8. SUMMARY & FUTURE WORK
An increasing number of distributed systems is using dis-
tributed object and component middleware. This increase
calls for support of developers by systematic software en-
gineering methods and tools. Our research concentrates
on synchronization behaviour in object-oriented middleware
systems. The complexity increase introduced by the implicit
and non-deterministic parallel behaviour of distributed sys-
tems creates a common source of error in middleware-based
applications.

Our aim is to provide developers with a verification tool
that can be used to check the integrity of their design with
respect to specified safety and liveness properties. UML de-
sign models are annotated by developers using stereotypes
representing the different synchronization behaviours in the
model. We have developed formal mappings of these stereo-
types enabling us to carry out verification on the generated
formal specification. We therefore benefit from the rigorous
model checking approach of formal methods whilst not bur-
dening the developer with any new notation or knowledge.

We have identified a finite number of synchronization prim-
itives used in object-oriented middleware systems. These
consist of client-side synchronization primitives, which gov-
ern how clients make remote invocation calls and threading
policies, which determine how servers handle method re-
quests.

We plan to evaluate our approach with industrial models,
which will be provided by our industrial collaborators. We
also plan to extend this research to address different liveness
and safety properties.

Acknowledgements
We are indebted to Cecilia Mascolo and Christian Nentwich
for the valuable help they provided in improving the presen-
tation of this paper.

9. REFERENCES
[1] S.-C. Cheung and J. Kramer. Checking Safety

Properties Using Compositional Reachability
Analysis. ACM Transactions on Software Engineering
and Methodology, 8(1):49–7, 1999.

[2] R. Cleaveland, J. Parrow, and B. Steffen. The
Concurrency Workbench: A Semantics Based Tool for
the Verification of Concurrent Systems. ACM
Transactions on Programming Languages and
Systems, 15(1):36–72, 1993.

[3] W. Emmerich. Engineering Distributed Objects. John
Wiley & Sons, Apr. 2000.

[4] M. Gaspari and G. Zavattaro. A Process Algebraic
Specification of the New Asynchronous CORBA
Messaging Service. In Proceedings of the 13th European
Conference on Object-Oriented Programming,
ECOOP’99, volume 1628 of Lecture Notes in
Computer Science, pages 495–518. Springer, 1999.

[5] D. Harel. Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Programming,
8(3):231–274, 1987.

[6] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[7] N. Kaveh. Model Checking Distributed Objects. In
W. Emmerich and S. Tai, editors, Proc. of the 2nd Int.
Workshop on Distributed Objects, Davis, Cal, Nov.
2000, volume 1999 of Lecture Notes in Computer
Science, pages 116–128. Springer, 2001.

[8] J. Lilius and I. Paltor. A tool for verifying UML
models. In IEEE International Conference on
Automated Software Engineering, volume 14, 1999.

[9] J. Magee and J. Kramer. Concurrency: Models and
Programs – From Finite State Models to Java
Programs. John Wiley, 1999.

[10] R. Milner. Communication and Concurrency.
Prentice-Hall, 1995.

[11] R. Milner. Communicating and Mobile Systems: the
π-calculus. Cambridge University Press, 1999.

[12] R. Monson-Haefel. Enterprise Javabeans. O’Reilly
UK, 1999.

[13] Object Management Group. The Common Object
Request Broker: Architecture and Specification
Revision 2.3. 492 Old Connecticut Path, Framingham,
MA 01701, USA, December 1998.

[14] Object Management Group. XML Meta Data
Interchange (XMI) – Proposal to the OMG OA&DTF
RFP 3: Stream-based Model Interchange Format
(SMIF). 492 Old Connecticut Path, Framingham, MA
01701, USA, Oct. 1998.

[15] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison
Wesley Longman, Reading, MA, USA, 1999.

[16] S. Uchitel and J. Kramer. A Workbench for
Synthesising Behaviour Models from Scenarios. In
Proc. of the 23rd Int. Conf. on Software Engineering,
Toronto, Canada. ACM Press, 2001. To appear.

