
Applying ArchOptions to Value the Payoff of Refactoring
Rami Bahsoon, Wolfgang Emmerich

Dept. of Computer Science, University College London
Gower Street, WC1E 6BT, London, UK

{r.bahsoon | w.emmerich} @cs.ucl.ac.uk

Abstract
ArchOptions is a real-options based model that we have proposed
[1] to value the flexibility of software architectures in response to
future changes in requirements. In this paper, we build on Ar-
chOptions to devise an options-based model, which values the
architectural flexibility that results from a refactoring exercise.
This value assists in understanding the payoff of investing in
refactoring: if the refactored system results in an architecture that
is more flexible, such that the expected added value (in the form
of options) due to the enhanced flexibility outweighs the cost of
investing in this exercise, then refactoring is said to payoff. We
apply our model to a refactoring case study from the literature.

1. Introduction
As software is enhanced, modified, or adapted to new re-
quirements, the software becomes more complex and drifts
away from its original design. To reduce complexity, there
is a need for techniques that incrementally improves the
internal software quality. The research domain that ad-
dresses this problem is referred to as restructuring, or in the
case of object-oriented and agile development, as refactor-
ing [12]. In the context of software evolution, restructuring
and refactoring are used to improve the quality of the soft-
ware such as extensibility, modularity, reusability, com-
plexity, and efficiency. In refactoring, the key idea is to
redistribute classes, variables, and methods across the class
hierarchy in order to facilitate future adaptations and exten-
sions. This in turn will result in a modified structure (com-
pared to the original) with different qualitative measures
and value potentials.

Numerical measures can be used before applying a
refactoring, to measure the (internal or external) quality of
software, or after the refactoring, to measure improvements
of the quality. For example, Simon et al. use distance-based
cohesion metrics to detect where in a given piece of soft-
ware there is a need for refactoring [16]. Kataoka et al. use
coupling metrics to evaluate the effect of refactoring on
maintainability [11]. Coleman et al. use a polynomial of
multiple measures to define a maintainability index by
which the effect of refactoring can be evaluated [5]. How-
ever, little has been done on understanding the economics
of refactoring. For example, when is it cost-effective to
invest in a refactoring exercise? How can we value the
payoff due to refactoring, prior to investing in such an ex-
ercise? How can we reason about this payoff in connection
with changes in the structure and at correspondingly higher
level of abstractions than code? These questions translate

into a need for economic models that quantify the payoffs
of refactoring. Such models inform the decision in invest-
ing in refactoring through a tradeoff between the up-front
cost and the expected added value to the system as a result.
The added value may be strategic or operational; it may
take the form of expected savings in maintenance and/or
returns due to the enhancement of some qualities such as
maintainability, extensibility, modularity, reusability, or
efficiency. A characteristic of these benefits, whether stra-
tegic or operational, is that their payoffs are uncertain and
may not be immediate.

Little work has been done to understand the economics
of restructuring and refactoring. Notable effort includes
[18, 20]. Leitch and Stroulia [18] have proposed a frame-
work for predicting the return on investment (ROI) for a
planned refactoring using cost-benefit analysis. In their
seminal work, Sullivan et al. [20] have shown how options
thinking can be used to value software design decisions
including restructuring. They have developed an option
model that borrows from decision analysis to value the
payoff of the decision to restructure legacy systems and its
optimal exercise time.

In this paper, we propose an options-based approach to
value the architectural flexibility that results from a refac-
toring exercise. We build on the ArchOptions model [1],
which values the flexibility of software architectures, rela-
tive to likely changes in requirements. We assume that
refactoring a system could enhance the flexibility of the
system’s structure/architecture. This incurs an upfront cost
to investment. It is worthwhile investing in refactoring, if
the refactored system could lead to an architecture/structure
that is flexible enough and adds a value to system follow-
ing this exercise. We use the expected benefits due to
changes in the structure, as a way to value the payoff of
refactoring. As we assume that the added value is attributed
to flexibility, the decision to refactor is driven by the moti-
vation to maximize the payoffs in the adapted architectural
flexibility that results from refactoring. We use savings in
maintenance cost relative to some likely future changes as a
way to quantity the added value. We apply the model to a
refactoring case study from the literature.

The use of strategic flexibility to value software design
decisions is not new. It has been explored in, for example,
[2,7,8,14,19,20]. However, the use of the resulting archi-
tectural flexibility and its value as metric to inform the de-
cision of investing in refactoring is in the scope of the
work. The paper is further structured as follows. Section 2

presents an option model to value the payoff of refactoring.
Section 3 evaluates the model. Section 4 concludes the
paper and indicates further work.

2. Valuing the Payoff of Refactoring
Real options analysis recognizes that the value of the capi-
tal investment lies not only in the amount of direct reve-
nues that the investment is expected to generate, but also in
the future opportunities that flexibility creates [7]. These
include growth, abandonment or exit, delay, and learning
options. An option is an asset that provides it owner the
right without a symmetric obligation to make an investment
decision under given terms for a period of time into the
future ending with an expiration date [15]. If conditions
favourable to investing arise, the owner can exercise the
option by investing the strike price defined by the option. A
call option gives the right to acquire an asset of uncertain
future value for the strike price.

We derive a real option-based model from [3], referred
to as ArchOptions. In ArchOptions, we value the growth
options of an architecture relative to some future changes,
as a way for understanding the architectural flexibil-
ity/stability. A growth option is a real option to expand
with strategic importance [13]. Growth options are com-
mon in all infrastructure-based (as it is the case with soft-
ware architectures) or strategic industries with multiple-
product generations or applications [15]. In the architec-
tural context, growth options are linked to the flexibility of
the architecture to respond to future changes. Since the
future changes are generally unanticipated, the value of the
growth options lies in the enhanced flexibility of the archi-
tecture to cope with uncertainty; otherwise, the change may
be too expensive to pursue and opportunities may be lost.

Let us assume that the value of the system is V. As the
software evolves, a change in future requirement ii is as-
sumed to enhance the system value by xi% with a follow-on
investment of Cei, where Cei corresponds to an estimate of
the likely cost to accommodate the change. This is similar
to a call option to buy (xi%) of the base project, paying Cei
as exercise price. Thus, the investment opportunity in the
system can be viewed as a base-scale investment plus call
options on the future opportunities, where a future oppor-
tunity corresponds to the investment to accommodate some
future requirement(s). The payoff of the constructed call
option gives an indication of how valuable the flexibility of
an architecture to endure some likely changes in require-
ments. The value of the system having a particular architec-
ture, materializes to (1) accounting for V and both the ex-
pected value and exercise cost to accommodate ii, for i ≤ n.
Valuing the expectation E of expression (1) uses the as-
sumptions of [3] and detailed in [1]. We assume that the
interest rate is zero for the simplicity of exposition.

 n

 V + ∑ E [max (xiV - Cei, 0)] (1)

For a change in requirement k, if the (- I

 i=0

The model has the prospect of valuing the architectural
flexibility and its value potentials due to various types of
changes. These may be preventive, adaptive, or perfective
[10]. Refactoring, a preventive change, can be seen as an
investment to embed flexibility. The objective is to “clear
up” much of the system degraded structure and enhance its
upside potentials by making it more accommodating for
future changes. In this context, refactoring can be seen as
an investment to purchase growth options that enhance the
upside potentials of the structure, paying an upfront cost Ie,
which corresponds to the cost of refactoring. We build on
the ArchOptions model to value whether it is worthwhile to
invest into refactoring, as shown in (2):
 n

 V- Ie + ∑ E [max (xiV - Cei, 0)] (2)
 i=0

Let us assume that S1 is a structure of the software ob-
tained by refactoring S0. We assume that refactoring is an
economical choice, if it adds value to S1 relative to S0. We
attribute the added value to the enhanced flexibility of S1
over S0. If we are considering savings in maintenance as a
criteria for understanding the value added to the system,
then future changes in requirements following refactoring
will tell us how valuable S1 is relative to S0. But the added
value due to refactoring is uncertain, as the demand on fu-
ture changes are uncertain. This makes refactoring a good
candidate to reason using option “thinking”.

The decision to refactor has to be guided by the ex-
pected payoff in (- Ie + ∑ i=1…n E [max (xiV - Cei, 0]) S1 rela-
tive to that of S0. That is, if (- Ie + ∑ i=1…n E [max (xiV - Cei,
0)] S1 > ∑ i=1…n E [max (xiV - Cei, 0)] S0) for some likely
changes, then it is worth investing in such an exercise, as
the investment in refactoring is likely to generate more
growth options for S1 than for S0. As we assume that xiV is
the expected saving in S1 over S0 due to refactoring, it is
reasonable to consider that if (- Ie + ∑ i=1…n E [max (xiV -
Cei, 0)] S1 >=0), then investing in refactoring is said to pay-
off. An optimal payoff could be when the option value (i.e.,
∑ i=1…n E [max (xiV - Cei, 0)] approaches the maximum rela-
tive to some changes in requirements, indicating an optimal
payoff in an investment in flexibility provided that (- Ie + ∑

i=1…n E [max (xiV - Cei, 0)] S1 >= 0). The analyst may con-
duct sensitivity analysis to manipulate the model variables
and analyze when such a state is likely to occur.

e + E [max (xkV
- Cek, 0)])<0, then refactoring is not likely to payoff as the
flexibility of the architecture in response to the change is
not likely to add a value if the change need to be exercised.
Two interpretations might be possible: (i) the architecture
is overly flexible in the sense that its response to the
change(s) has not “pulled” the options. This implies that
the embedded flexibility (or the resources invested in im-
plementing flexibility) are wasted and unutilized to reveal
the options relative to the changes. In other words, the de-
gree of flexibility provided is much more than the flexibil-

ity demanded for the change. This case has the prospect in
providing an insight on how much do we need to invest in
refactoring relative to the likely future changes, while not
sacrificing much of the resources; (ii) the other case is
when the architecture is inflexible relative to the change.
This is when the cost of accommodating the change is
much more than the cumulative expected value of the
architecture responsiveness to the changes.

Table 1. Financial/real options/ArchOptions analogy
Option on
stock

Real option on a
project

ArchOptions

Stock Price Value of the ex-
pected cash flows

Value of the architectural potential
of the change (xiV)

Exercise
Price

Investment cost Estimate of the likely cost to ac-
commodate the change (Cei)

Time-to-
expiration

Time until oppor-
tunity disappears

Time indicating the decision to
implement the change (t)

Volatility Uncertainty of the
project value

“Fluctuation” in the return of value
of V over a specified period of
time (σ)

Risk-free
interest rate

Risk-free interest
rate

Interest rate relative to budget and
schedule (r)

The options model (2) requires the estimation of several
parameters. Most importantly are xiV, Ie, and Cei.

Estimating Cei, Ie. Estimating cost is a well-
established component in software engineering; it is out-
side the scope of our work. For example, it is feasible to
use existing metrics to cost estimation (e.g. COCOMO-II
[4]). Another approach is to build on architectural level
dependency analysis (e.g., [14]) research to extract cost
estimates of accommodating ii, guided by some structural
criteria.

Capturing and estimating xiV. The application of [3] as-
sumes that the stock option is a function of the stochastic
variables underlying stock’s price and time. We assume
that V moves stochastically bounded to two extreme values:
optimistic and pessimistic. This assumption appears to be
plausible: (i) it tends to account for all possible values
within the bound, yielding to a better approximation when
opposed to an ad-hoc type of estimation; (ii) the value of an
(evolvable) system changes over time; it tends to change in
uncertain way due to changes in requirements.

 Black and Scholes is an arbitrage-based technique.
The technique requires knowledge of the value of the asset
in question in span of the market. Software architectures,
however, are (non-traded) real assets. Real options may be
valued similarly to financial options, though they are not
traded [15]. Real options valuation based on arbitrage-
based pricing techniques determines the value of an asset in
question in span of the market value using a correlated twin
asset [15]. The twin asset is an asset that has the same risks
the asset in question will have when the investment has
been completed [15]. In financial options, several proxies
are available to predict the value of the financial asset - the
most obvious proxy is simply the historical values of the

asset. In real options, such proxies rarely exist and the ana-
lyst may need to rely on experience and judgment in his/her
estimations [15]. Real options valuation (based on arbi-
trage) focuses on market value and uses the rate of return
on the twin asset as an input to the valuation of the asset in
question. If the asset value is not directly observable, it is
reasonable to use estimates of the revenues on the asset to
estimate the market value [15]. For example, some aspects
of the architectural responsiveness to the change can be
justified in terms of the directly observable cash flows
linked to future operational benefits or the market- making
it easy to use the rate of return to value the options. How-
ever, many others aspects may not be directly observable
through cash flows. Yet, their contribution to the added
value is crucial. If the analyst(s) relies on experience and
judgment in his/her estimation, the estimates tend to be
subjective but could make an implicit use of market infor-
mation. However, back-of-the-envelope calculations,
which are based on value estimates (rather than on market
value) are yet revealing [19]. We note that it remains an
open challenge to strongly justify precise estimates for real
options in software [20]. As a compromise, estimating xiV
requires a comprehensive solution that is flexible to incor-
porate multiple valuation techniques; some with subjective
estimates and others based on market data, when available.
The problem of how to guide the valuation and introduce
discipline in this setting, we term as the multiple perspec-
tives valuation problem. As the added value may be rela-
tive to the market; on one or more technical aspects of the
system; and/or relative to the organization, the solution
may be through a valuation framework that captures the
added value - of the architectural potential of the change-
from different perspectives. The purpose is to reach a com-
prehensive value of options from the different perspectives.
Also, the aim is to promote flexibility through incorporat-
ing both subjective estimates (may implicitly use market
information) and/or explicit market value (when available).
As the architecture is the artefact that facilitates both tech-
nical and market reasoning, such an approach seems to be
viable. Addressing this problem and its solution is outside
the scope of this paper.

3. Case Study
The objective of the study is to empirically simulate the
applicability of the model, and validate its interpretations.
We summarize the simulation rationale as follows: (a)
refactor and observe its effect on the flexibility of the struc-
ture (b) observe the responsiveness of the structure to some
random changes in requirements following action (a); (c)
quantify flexibility relative to likely future changes as a
way for understanding the payoff of refactoring. Particu-
larly, we seek an understanding for the following: Are the
model interpretations valid? When does refactoring, as an
adapted flexibility, add to the system a value? How worth-

while is it investing in such an exercise while not sacrific-
ing much of our resources?

 To achieve the simulation rationale, we use the refac-
toring case study of a traffic light system published in [18],
which proposes a framework to predict the return on in-
vestment (ROI) for a planned refactoring using cost-benefit
analysis. We recast the problem into an option problem: we
consider the benefits of refactoring to be uncertain as the
demand for future changes -following refactoring- are un-
certain. We restrict architectural information to data and
control dependency for this example. Table 2 summarizes
the structural changes upon evolving S0 (the initial struc-
ture) to S1 (the refactored structure) of the traffic light sys-
tem. Table 2 shows that refactoring has transformed the
structure into a more flexible state through the decrease of
both control and data dependencies. The decrease in de-
pendencies in S1 means less complexity and better pros-
pects for accommodating future changes.

Table 2. Aggregate results: the change (%)- evolving S0 to S1

 S0 S1
Change (%)

Size in SLOC 740 602 -19%

No. of Modules 29 38 31%

Avg. SLOC Per Module 26 16 -38%

Data Dependency 147 112 -23.60%

Control Dependency 101 73 -19.40%

We apply the model: we construct a call option for the

likely changes following refactoring. To capture and esti-
mate xiV, we restrict the valuation to the development per-
spective for space limitation. We use the expected savings
in development effort for likely futures changes due to
refactoring. When necessary, we use $2000 for man-month
to cast the effort into cost. We show how we have esti-
mated the parameters:

Estimating (Ie). Table 3 reports the refactoring effort
(man-month), cost ($), and schedule (month) based on the
refactoring plan presented in [18]. Table 3 provides three
values: optimistic, likely, and pessimistic for each parame-
ter. All are calculated using COCOMO II.

Capturing and estimating (xiV). To value the archi-
tectural potential of S1 due to refactoring, we use twenty
random changes to stress S1 with cost given as Cei. The
twenty changes are of an adaptive nature; they are gener-
ated based on percentage estimates of design, integration,
and code to be modified per change. The same likely
changes were used to stress S0. The objective is to calculate
the difference (i.e., savings-if any) in effort/cost of S1 over
S0. The aim is to quantify the responsiveness of the struc-
ture due to the embedded flexibility, from the development
perspective. We use COCOMO II to estimate the ef-
fort/cost for the twenty changes on each structure. xiV cor-
responds to the difference- as reported in Table 4. Ex-
pected savings, due to refactoring, are in the range of

$12806 (optimistic) to $7433 (pessimistic) for the twenty
changes.
 Calculating the volatility (σ). The volatility of the
stock price (σ) is a statistical measure of the stock price
fluctuation over a specific period of time; it is a measure of
how uncertain we are about the future of the stock price
movements. Volatility stands for the “fluctuation” in the
value of the estimated xiV. Intuitively, it “aggregates” the
“potential” values of the structure in response to the
change(s). We take the percentage of the standard deviation
of the three xiVs estimates-the optimistic, likely, and pessi-
mistic values- to calculate σ.

Exercise time (t) and free risk interest rate(r). As a
simulation assumption, we set the exercise time to three
years. We set the free risk interest rate to zero (i.e., assum-
ing that the value of money today is the same as that in
three years time).

Table 3. Refactoring effort, schedule, and cost

 Effort Schedule Iei

Op Lik Pes Op Lik Pes Op Lik Pes

Refactoring 0.9 1.2 1.5 3.6 3.9 4.2 1893 2366 2958

Observation 1. Flexibility creates options: S1 is more
flexible than S0 (due to decrease in dependencies as a result
of refactoring); S1 has created more options when com-
pared to S0.

Table 5 shows that S1 is in the money in response to
the twenty random changes- relative to the development
perspective. The results read that refactoring (i.e. as the
embedded flexibility in S1) is likely to enhance the option
value by an excess of $5979 (pessimistic) to $10593 (op-
timistic) over S0, if the twenty changes need to be exercised
following refactoring. Thus, as flexibility is improved, S1 is
likely to add value in the form of options in response to the
twenty changes.

Table 4. Options on S1 relative to S0 ($) for the twenty random
likely changes (Development Perspective)

 Pessimistic Likely Optimistic

Cei T xiV Cei T xiV Cei T xiV

 1454 3 7433 1817 3 9292 2212 3 12806

Option 5979.09 7474.6 10593

Observation 2. How worthwhile is it investing in refactor-
ing, while not sacrificing much of our resources?
 Let us take the average value of the twenty changes.
The objective is to simulate the responsiveness of S1 to one
likely average change. The result of table 5 implies that
though S1 is flexible, refactoring has not “pulled” the op-
tions for one change. S1 is said to be out of the money for
this change. This implies that the embedded flexibility (or
the resources invested in implementing flexibility) are
wasted and unutilised to reveal the options relative to this
change. In other words, the degree of flexibility provided is

much more than the flexibility demanded for this change.
We repeat the above experiment, but stressing S1 with two,
three, four, and then five average changes at a time. Using
two average likely changes, the options reported zero val-
ues. Again, two likely average changes have not “pulled”
the options. Interestingly, S1 has just about pulled the op-
tions for three changes. For four, five, and nine changes, S1
reveals the options; however, refactoring is not likely to
payoff as (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 < 0). For
ten changes, refactoring is expected to payoff as (- Ie + ∑

i=1…n E [max (xiV - Cei, 0)] S1 >0). Thus, refactoring is likely
to add to the system a value, if ten or more changes need to
be exercised during the next three years.

Table 5. Options on S1 for one to ten changes at a time

xiV Options
Changes σ Pes. Lik. Op. Pes. Lik. Op.

1Req.Ch. 1.4 371.7 464.6 640.3 0 0 0

2 Req.Ch. 2.7 743.3 929.2 1280.6 0 0 0

3 Req.Ch. 4.1 1115.0 1393.8 1920.9 0+ 0+ 1.2

4 Req.Ch. 5.5 1486.6 1858.4 2561.2 73.6 92.45 334.9

5 Req.Ch. 6.8 1858.3 2323.0 3201.5 405.6 507.6 989.07

9 Req. Ch. 12.2 3339 4181.4 5760 1885 2364 3547

10 Req. Ch. 13.6 3717 4640 6400 2263 2823 4188

4. Conclusions and Future Work

The observations verify that the model interpretations are
reasonable. We have appealed to the use of maintenance
savings as a way to value the options due to refactoring.
Needless to say, the valuation could have incorporated
other valuation points of view (e.g., extensibility, reusabil-
ity, efficiency etc.) to value the options due to refactoring
on other qualities and/or the market (if relevant). The aim
is to have a comprehensive value of options from different
perspectives. Future work entails detailing how such a
valuation points of view can be used to capture, value, and
reconcile the options from different perspectives.

Experts may question our use of [3] to options valua-
tion, as the satisfaction of the spanning condition may be
doubtful. We argue that valuation based on man-month
does implicitly hold market-based data and is done in rela-
tion with the market. Alternatively, we could have cast the
options model to use different options valuation (e.g., [6]).
However, the application of [3] offers a closed and an easy-
to-compute solution, for it assumes that xiV is lognormaly
distributed, not requiring xiV to be probability-adjusted for
rise and drop in value, as when compared to [6]. We have
not explicitly modeled the uncertainty of future changes
and their corresponding time value. We will investigate this
in the future. Following the argument of [19], such models
need not be perfect: what is essential is that they capture
the most important terms; their assumptions and operation
must be known and understood so that the analyst can
evaluate their predictions.

5. Acknowledgements
The authors would like to thank Hakan Erdogmus, Kevin Sulli-
van, and other anonymous reviewers for their very valuable feed-
back that has significantly improved the content and the presenta-
tion of the paper. All errors of fact or interpretation remain the
sole responsibility of the authors.

6. References
[1] Bahsoon, R., Emmerich, W.: ArchOptions: A Real Options-Based Model for

Predicting the Stability of Software Architecture. In: Proceedings of the Fifth
ICSE Workshop on Economics-Driven Software Engineering Research (2003)

[2] Baldwin, C. Y., Clark, K. B.: Design Rules - The Power of Modularity. MIT
Press (2001)

[3] Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities.
Journal of Political Economy (1973)

[4] Boehm, B., Clark, B., Horowitz, E., Madachy,R., Shelby, R., Westland, C.:
The COCOMO 2.0 Software Cost Estimation Model. In: International Society
of Parametric Analysts (1995)

[5] Coleman, D., Arnold, P., Bdoff, S., Gilchrist, H., Hayes, F. and Jeremaes P.,
Object-Oriented Development: The Fusion Method. Prentice Hall (1994)

[6] Cox, J., Ross, S., Rubinstein, M.: Option Pricing: A Simplified Approach.
Journal of Financial Economics. Vol.7 (3). (1979) 229-264

[7] Erdogmus, H., Boehm, B., Harriosn, W., Reifer, D. J., and Sullivan, K. J.:
Software Engineering Economics: Background, Current Practices, and Future
Directions. In: Proceeding of 24th International Conference on Software Engi-
neering, Orlando, FL. (2002)

[8] Erdogmus, H.: Value of Commercial Software Development under Technol-
ogy Risk. The Financier, vol. 7. (2000)

[9] Hull, J. C.: Options, Futures, and Other Derivative Security. Third edition,
Prentice-Hall (1997)

[10] IEEE Standard 610.12: Glossary of Software Engineering Terminology. In:
Software Engineering Standards Collection, IEEE CS Press (1993)

[11] Kataoka, Y., Imai, T., Andou, H., and Fukaya, T.: A Quantitative Evaluation
of Maintainability Enhancement by Refactoring. In: Proc. Int’l Conf. Software
Maintenance, pp. 576-585, (2002)

[12] Mens, T., Tourwe, T.: A Survey of Software Refactoring. In: IEEE Transac-
tions on Software Engineering. Vol. 30(2)(2004)

[13] Myers, S. C.: Finance Theory and Financial Strategy. Corporate Finance
Journal. Vol. 5(1). (1987) 6-13

[14] Port, D., Huang, L., and Boehm, B: Strategic Architectural Flexibility. In: 4th
International Workshop on Economics-Driven Software Engineering Research
(EDSER), (2002), 32-37

[15] Schwartz, S., Trigeorgis, L.: Real options and Investment Under Uncertainty:
Classical Readings and Recent Contributions. MIT Press Cambridge, Massa-
chusetts (2000)

[16] Simon, F. Steinbru, F. ckner, and Lewerentz, C. : Metrics Based Refactoring,
Proc. European Conf. Software Maintenance and Reeng. pp. 30-38 (2001)

[17] Stafford, J. A., Wolf, A. W.: Architecture-Level Dependence Analysis for
Software System. International Journal of Software Engineering and Knowl-
edge Engineering. Vol. 11(4) (2001) 431-453

[18] Stroulia, E., Leitch R.: Understanding the Economics of Refactoring. In:
Proceedings of the Fifth ICSE Workshop on Economics-Driven Software En-
gineering Research (2003)

[19] Sullivan, K. J., Griswold, W., Cai, Y., Hallen, B.: The Structure and Value of
Modularity in Software Design. In: Proceedings of ESEC/FSE-9, Vienna,
Austria (2001) 99-108

[20] Sullivan, K. J.: Chalasani, P., Jha, S., Sazawal, V.: Software Design as an
Investment Activity: A Real Options Perspective. In: Real Options and Busi-
ness Strategy: Applications to Decision-Making. Trigeorgis L.(ed.) Risk
Books (1999)

	Abstract
	1. Introduction
	S0
	S1

