
1

1© Wolfgang Emmerich, 1997

Object Models
for

Distributed Systems

2© Wolfgang Emmerich, 1997

Motivation

n Distributed Systems consist of multiple
components.

n Components are heterogeneous.
n Components still have to be

interoperable.
n There has to be a common model for

components that expresses
• component states,
• component services and
• interaction between components.

2

3© Wolfgang Emmerich, 1997

OO Approach to Distributed Systems

n Components ⇔ objects.
n Visible component state ⇔ object

attributes.
n Usable component services ⇔ object

operations.
n Component interactions ⇔ operation

execution requests.
n Component service failures ⇔

exceptions.

4© Wolfgang Emmerich, 1997

Need for an object model

n There are many different object-oriented
approaches

n Distribution middleware must define
object model that can serve as a common
basis for heterogeneous components.

nWhat are the ingredients for an object
model?

nWe now introduce the OMG object model.

3

5© Wolfgang Emmerich, 1997

Object

n Has a unique identifier.
nMay have many different references that

refer to the object.
n Has a set of attributes whose names

denote values.
n References may denote

• equal objects
• identical objects

n Is encapsulated by operations.
nMay raise particular exceptions.

6© Wolfgang Emmerich, 1997

Sample Objects

8987:Player

first = “Jürgen”
surname = “Klinsmann”
age = 34
role = Forward

898:FootballClub

name = “Tottenham Hortspur FC”
adr = “White Hart Lane”

4

7© Wolfgang Emmerich, 1997

Types and Distributed Objects

n Attributes, operations and exceptions are
properties objects may export to other
objects.

nMultiple objects may export the same
properties.

n Only define the properties once!
n Attributes and operations, and exceptions

are defined in object types.

8© Wolfgang Emmerich, 1997

Attributes

n Attributes have a name and a type.
n Type can be an object type or a non-

object type.
n Attributes are readable by other

components.
n Attributes may or may not be modifiable

by other components.
n Attributes correspond to one or two

operations (set/get).

5

9© Wolfgang Emmerich, 1997

Exceptions

n Service requests in a distributed system
may not be properly executed.

n Exceptions are used to explain reason of
failure to requester of operation
execution.

n Operation execution failures may be
• generic or
• specific.

n Specific failures may be explained in
specific exceptions.

10© Wolfgang Emmerich, 1997

Operations

n Operations have a signature that consists
of
• a name,
• a list of in, out, or inout parameters,
• a return value type, and
• a list of exceptions that the operation can

raise.

6

11© Wolfgang Emmerich, 1997

Example: Player

typedef enum {
 Goalie, Defender, Midfielder, Forward
} Position
interface Player {
 readonly string first;
 readonly string surname;
 readonly short Age;
 Position Role;
 Exception AlreadyBooked{};
 void book (in Date d) raises{AlreadyBooked};
};

12© Wolfgang Emmerich, 1997

Operation Execution Requests

n A client object can request an operation
execution from a server object.

n Operation request is expressed by
sending a message (operation name) to
server object.

n Server objects are identified by object
references.

n Clients have to react to exceptions that
the operation may raise.

7

13© Wolfgang Emmerich, 1997

Subtyping

n Properties shared by several types should
be defined only once.

n Object types are organised in a type
hierarchy.

n Subtypes inherit attributes, exceptions
and operations from their supertypes.

n Subtypes can add more specific
properties.

n Subtypes can redefine inherited
properties.

14© Wolfgang Emmerich, 1997

Subtyping Example

interface Club {
 readonly string name;
 readonly string street;
 readonly string city
};
interface FootballClub : SportsClub {
 ...
};
interface CricketClub : SportsClub {
 ...
};

8

15© Wolfgang Emmerich, 1997

Polymorphism

n Object models may be statically typed.
n Static type of a variable restricts the

dynamic type of objects that can be
assigned to it.

n Polymorphism denotes the possibility of
assignments of objects that are instances
of the static type and all its subtypes.

16© Wolfgang Emmerich, 1997

Polymorphism Example

clubs:sequence<Club>

898:FootballClub

name = “Tottenham Hortspur FC”
adr = “White Hart Lane”

890:CricketClub
name = “MCC”
adr = “Dorset Square”

897:FootballClub

name = “Chelsea FC”
adr = “Stamford Bridge”

