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Distributed Systems

... “use of more than one computer
connected by communications links to
carry out a computational task”

... includes “parallel” computing

... most contemporary professional systems
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Course Objectives

• to identify special characteristics of
distributed systems

• to identify ways user/programmer view
can be simplified

• to identify protocols, techniques and
algorithms which address DS issues
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Why Distribute?

• resource sharing
• physical separation
• robustness
• performance
• cost-effective system evolution
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Examples

• file server, print server, etc.
• networked management
• directory and naming services
• desktop (multimedia) conferences
• large-scale computation
• etc.
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Why are DSs Different?

• non-zero (and variable) message
transmission time

• probability of partial failure of
collaborating components

• large scale
• environment is not totally secure
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Message Transmission Time

• processors executing in parallel
• multi-path links between them
• same message may arrive at different

times at different processors
• possibility of “race” situations, i.e. non-

determinism in algorithm execution (or
bugs)

• consistency of data at different sites

8© University College London, 1998

Partial Failures - 1

• not a concept found in single processor
programs

• recovery from failures
– use of alternative processor
– migration of services
– update and propagation of naming/routing

information
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Partial Failures - 2

• Fault tolerant algorithms
– leadership elections
– distributed synchronisation
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Scaling

• Abstraction
• Inheritance/object orientation
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Security

• computer hosts may be protectable via
architecture and OS etc.

• ... but link is very vulnerable to
– tapping/message reply
– hosts faking addresses

• ... and hosts vulnerable to
– deliberate message overload
– faked services
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Distributed Programming

• Can we arrange for programmer’s view of
DS to be identical to that for single-
processor system?

• Simple answer is “no”, but we can do
quite a lot
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Remote Procedure Call - 1

• common approach
• client-server model
• caller’s arguments are marshalled by

“stubs”, put in a packet and sent to
remote proc.

• problems with memory addresses - need
args to be sent by “value”
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Remote Procedure Call - 2

• execution semantics when failure
– at-least-once (cheap and easy but ...)
– at-most-once (relatively easy)
– exactly once (expensive protocol)

• how is server located?
– name server based on type matching
– trader includes other attributes e.g.

location of device, options, etc.
– version management too
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Remote Procedure Call - 3

• parameter security
– may need to pass encryption keys or other

security tokens as parameters

• Interface Definition Language (IDL)
– indicates type and order of parameters
– signature for matching in name server
– possibly security indication for stubs
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Real World

• often termed “Middleware”
• support by environments such as DCE,

CORBA etc.
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Transparency

• ... is desirable, but may not be achievable:
– distribution - effects of distribution (delays

etc.) should be invisible to user
– location - location of components should be

irrelevant
– migration - remote objects may relocate

during use
– failure - recovery from faults
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Security

Use of cryptographic techniques to deal
with:

• secrecy
• authentication of individuals and

messages
• replay and faking attacks
• can also provide access control to

object methods


