
University College London

10/06/98 1

1© University College London, 1998

Distributed Systems

Prof. Steve Wilbur
Department of Computer Science

University College London

2© University College London, 1998

Distributed Systems

... “use of more than one computer
connected by communications links to
carry out a computational task”

... includes “parallel” computing

... most contemporary professional systems



University College London

10/06/98 2

3© University College London, 1998

Course Objectives

• to identify special characteristics of
distributed systems

• to identify ways user/programmer view
can be simplified

• to identify protocols, techniques and
algorithms which address DS issues

4© University College London, 1998

Why Distribute?

• resource sharing
• physical separation
• robustness
• performance
• cost-effective system evolution



University College London

10/06/98 3

5© University College London, 1998

Examples

• file server, print server, etc.
• networked management
• directory and naming services
• desktop (multimedia) conferences
• large-scale computation
• etc.

6© University College London, 1998

Why are DSs Different?

• non-zero (and variable) message
transmission time

• probability of partial failure of
collaborating components

• large scale
• environment is not totally secure



University College London

10/06/98 4

7© University College London, 1998

Message Transmission Time

• processors executing in parallel
• multi-path links between them
• same message may arrive at different

times at different processors
• possibility of “race” situations, i.e. non-

determinism in algorithm execution (or
bugs)

• consistency of data at different sites

8© University College London, 1998

Partial Failures - 1

• not a concept found in single processor
programs

• recovery from failures
– use of alternative processor
– migration of services
– update and propagation of naming/routing

information



University College London

10/06/98 5

9© University College London, 1998

Partial Failures - 2

• Fault tolerant algorithms
– leadership elections
– distributed synchronisation

10© University College London, 1998

Scaling

• Abstraction
• Inheritance/object orientation



University College London

10/06/98 6

11© University College London, 1998

Security

• computer hosts may be protectable via
architecture and OS etc.

• ... but link is very vulnerable to
– tapping/message reply
– hosts faking addresses

• ... and hosts vulnerable to
– deliberate message overload
– faked services

12© University College London, 1998

Distributed Programming

• Can we arrange for programmer’s view of
DS to be identical to that for single-
processor system?

• Simple answer is “no”, but we can do
quite a lot



University College London

10/06/98 7

13© University College London, 1998

Remote Procedure Call - 1

• common approach
• client-server model
• caller’s arguments are marshalled by

“stubs”, put in a packet and sent to
remote proc.

• problems with memory addresses - need
args to be sent by “value”

14© University College London, 1998

Remote Procedure Call - 2

• execution semantics when failure
– at-least-once (cheap and easy but ...)
– at-most-once (relatively easy)
– exactly once (expensive protocol)

• how is server located?
– name server based on type matching
– trader includes other attributes e.g.

location of device, options, etc.
– version management too



University College London

10/06/98 8

15© University College London, 1998

Remote Procedure Call - 3

• parameter security
– may need to pass encryption keys or other

security tokens as parameters

• Interface Definition Language (IDL)
– indicates type and order of parameters
– signature for matching in name server
– possibly security indication for stubs

16© University College London, 1998

Real World

• often termed “Middleware”
• support by environments such as DCE,

CORBA etc.



University College London

10/06/98 9

17© University College London, 1998

Transparency

• ... is desirable, but may not be achievable:
– distribution - effects of distribution (delays

etc.) should be invisible to user
– location - location of components should be

irrelevant
– migration - remote objects may relocate

during use
– failure - recovery from faults

18© University College London, 1998

Security

Use of cryptographic techniques to deal
with:

• secrecy
• authentication of individuals and

messages
• replay and faking attacks
• can also provide access control to

object methods


