
1

• The aim of this first lecture is to set the scene for this module. We
shall try to theme each lecture by a question. During this session
we are going to answer the question: What is object-orientation all
about, what is its evolution and how can it be positioned with
respect to other (structured) methods?

1© Wolf gang Emmerich, 1998/99

Object-Orientation

Wolfgang Emmerich

2

• In attempting to answer this question, we will have to look at the
problem that object-orientation is trying to address. This is very
much the steadily increasing complexity of software. Whe are going
to look at this problem from different perspectives: We are going to
discuss the reasons for software complexity, provide examples for
complex software systems, and discuss common properties that
any complex system has.

• In attempting to find a solution to software complexity, we will have
to take limitations of the human mind into account, because after all
the early phases of software construction are labour intensive and
still very much rely on the capabilities of the agents performing
them. The solution we propose reveals a number of principles that
aid the human agents performing a software process. These are
the principles of abstraction, hierarchy and decomposition.

• These principles are very nicely supported by the object-oriented
approach to software development. We are then going to take a
historical perspective and present the roots of objec-orientation in
simulation languages, the boost the approach got from object-
oriented programming languages, the ripening in object-oriented
design and analysis methods. We will also briefly discuss more
recent trends in object-oriented databases and open systems.

• We are going to conclude this week's session with an assessment
of object-orientation and identify its strengths and weaknesses.

2© Wolf gang Emmerich, 1998/99

Outline

■ Problem of software system complexity
■ Approaching a solution

• Human limitations
• Underlying principles

■ Development of the object-oriented approach
■ Assessment of object-orientation

3

• The first lines on this slide include the definition of complexity from
the Oxford English Dictionary.

• In the world of software systems, we would therefore be looking at
complex examples, such as retail banking systems, mobile phone
switches, airline reservation systems, component warehouse
systems and process control systems of, say a nuclear power
plant.

• The complexity in software systems arises from a number of
properties software systems have in common with any system of
size. These systems are developed by a team of developers, often
in a lengthy process. The size of the system is such that individuals
can no longer fully comprehend the system. They are difficult to
document and test. They may be inconsistent and incomplete and
they radically change in order to meet changing requirements.

• Please note that the complexity that we are interested in here is
macro complexity, i.e. the reflection of complex processes and
information of the real world in a software system, as opposed to
micro complexity of algorithms that complexity theory, a research
field of theoretical computer science is interested in.

• The physical sciences have, in many cases, provided fundamental
natural laws to explain complexity and its phenomena, eg
gravitation or thermodynamics. Software engineering, by reason of
its ‘social’ content, is in some ways closer to the social sciences
and cannot yet provide any such laws.

• On the next slide we are going to provide a more theoretical view of
complexity from one of the founders of object-oriented methods...

3© Wolf gang Emmerich, 1998/99

Software System Complexity

■ “Consisting of or comprehending various
parts united or connected together; formed
by a combination of different elements”

■ Any sizeable system:
• developed by a team in a lengthy process,
• impossible for individual to comprehend fully,
• difficult to document and test,
• potentially inconsistent or incomplete,
• subject to change.

■ But : Software engineering cannot yet
provide fundamental laws to explain
phenomena and approaches.

4

• In [Booc94], Grady Booch identifies four major reasons for complexity of any
system that has an intensive software component.

• The first reason is related to the application domains for which the software
system is being constructed. The people who have the knowledge and skills to
develop software usually do not have detailed domain knowledge and they
need to acquire the requirements for the software system from that particular
domain. Also these requirements are usually not stable but evolve. They evolve
during the construction of the system as well as after its delivery requiring
continous evolutions of the system. Complexity is often increased in trying to
preserve the investments that were made in legacy applications. Then
components addressing new requirements have to be integrated with existing
legacy applications and interoperability problems caused by the heterogeneity
of different system components introduces new complexity.

• The second reason is the complexity of the software development process.
Complex software intensive systems cannot be developed by single developers
but rather require teams of developers to work on it. This adds additional
overhead as the developers have to communicate about the development effort
and about intermediate artefacts they produce in order to make them as
consistent and complete as possible. This complexity often gets even more
difficult to handle if the teams do not work in one location but are geographically
dispersed. Then the management of these processes becomes an important
subtask on its on and they need to be kept as simple as possible.

• On the next slide, we are going to review the third and fourth reasons...

4© Wolf gang Emmerich, 1998/99

Reasons for Complexity

■ Grady Booch’s four reasons for complexity
of software-intensive systems:

1 Nature of the problem domain
• requirements,
• decay of systems

2 Complexity of process
• management problems,
• need for simplicity

5

• Booch's third reason is the danger of flexibility. Software offers a
very high flexibility for changes. Hence, developers can express
almost every kind of abstraction. This also often leads to situations
where developers develop software components themselves rather
than purchasing them from somewhere else. Unlike other industry
the production depth in software is very huge. The building or
automobile industry largely rely on highly specialised suppliers
delivering parts and the companies just produce the design, the
part specifications and assembly the parts that are delivered just in
time. With software this is different and many software companies
develop ever single component from scratch.

• The flexibility also triggers more demanding requirements which
make the products even more complicated as it is suggested by the
quote on this slide, which is taken from the ESA report on the
Ariane 5 failure
[http:/www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html].

• The final reason for complexity Booch gives is related to the
difficulty in characterising the behaviour, i.e. the dynamics of a
software system. While the human imagination suffices to describe
static properties of systems, given they are properly decomposed,
humans have problems to describe the behaviour of a complex
system. This is because to describe behaviour, it is not sufficient to
describe the properties of a system but the sequence of values
these properties take over time needs to be specified.

• The quote from [Booc94] at the bottom of the slide provide a nice
conclusion of the impact complexity has for software development.

5© Wolf gang Emmerich, 1998/99

Reasons for Complexity (continued)

3 Dangerous potential for flexibility of software
• “Software is flexible and expressive and thus

encourages highly demanding requirements,
which in turn lead to complex implementations
which are difficult to assess”

4 Characterising behaviour of systems
• “The task of the software development team is t o

engineer the illusion of simplicity”

6

• Software systems are systems itself and let us now focus on the
definition of a system. The quote on the top of this slide gives the
definition of a system from the Oxford English Dictionary.

• Checkland and Scholes define systems in [CS90] to have a clear
boundary an embedding into its operating environment, a
homogeneous character and an emergent property as a whole.

• These considerations apply to software systems as well. They have
to be properly bounded in the sense that it has to be defined which
operations are being performed within the system and which parts
are being performed without the system. They have to be properly
embedded into their environment. The should have a unique
character, which is often expressed in terms of the non-functional
requirements the system should meet and they have an emergent
property in the sense that only the whole software system renders
its components useful.

• Complex systems are constructed by interconnecting subsystems,
which are increasingly often systems on their own rights.

• Interconnecting subsystems: personal computer (I/O, processor,
memory), weather system (atmosphere, oceans, land masses),
local ecology (soil, buildings, micro-climate, users)

• If these subsystems are constructed independently, there is a
certain potential for inconsistencies and incongruities that usually
are undesirable. According to Checkland and Scholes, the results
of ‘inconsistencies’ are disasters, such as smog or pests. With
software systems these inconsistencies and incongruities
materialise in requirements that are not met, system malfunctions
and crashes.

6© Wolf gang Emmerich, 1998/99

Systems and Subsystems

■ “An organised or connected group of
objects; a whole composed of parts in
orderly arrangement according to some
scheme or plan”

■ System:
• boundary
• environment
• character
• emergent property

■ Systems: interconnected subsystems
■ Potential for inconsistency and incongruity

7

• Booch has identified five properties that architectures of complex
software systems have in common.

• Firstly, every complex system is decomposed into a hierarchy of
subsystems. This decomposition is essential in order to keep the
complexity of the overall system manageable. These subsystems,
however, are not isolated from each other, but interact with each
other.

• Very often subsystems are decomposed again into
subsubsystems, which are decomposed and so on. The way how
this decomposition is done and when it is stopped, i.e. which
components are considered primitive, is rather arbitrary and subject
to the architects decision.

• The decomposition should be chosen, such that most of the
coupling is between components that lie in the same subsystem
and only a loose coupling exists between components of different
subsystem. This is partly motivated by the fact that often different
individuals are in charge with the creation and maintenance of
subsystems and every additional link to other subsystems does
imply an higher communication and coordination overhead.

• Certain design patterns re-appear in every single subsystem.
Examples are patterns for iterating over collections of elements, or
patterns for the creation of object instances and the like. A
collection of extremely useful patterns can be found in [GHJV94]

• The development of the complete system should be done in slices
so that there is an increasing number of subsystems that work
together. This facilitates the provision of feedback about the overall
architecture.

7© Wolf gang Emmerich, 1998/99

Attributes of Complex Systems

■ Booch’s five attributes of a complex system:
• Hierarchical and interacting subsystems
• Arbitrary determination of primitive components
• Stronger intra-component than inter-component

links
• Combine and arrange examples of a few kinds of

subsystems
• Evolution from simple to complex working

systems

8

• We are now going to look at whether we can regonise any
discernable common forms in systems that can be used to simplify
them in order to make them more manageable.

• One mechanism to simplify concerns in order to make them more
manageable is to identify and understand abstractions common to
similar objects or activities.

• We can use a car as an example (which are considerable complex
systems). Understanding common abstractions in this particular
example would, for instance, involve the insight that clutch,
accelerator and brakes facilitate the use of a wide range of devices,
namely transport vehicles depending on transmission of power
from engine to wheels)

• Another principle to understand complex systems is the separation
of concerns leading to multiple hierarchies that are orthogonal to
each other.

• In the car example, this could be, for instance, the distinction
between physical structure of the car (chassis, body, engine),
functions the car performs (forward, back, turn) and control
systems the car has (manual, mechanical, electrical).

• In object-orientation, the class structure and the object structure
relationship is the simplest form of related hierarchy. It forms a
canonical representation for o-o analysis. The next slide attempts a
visualisation of the relationship between these two hierarchies and
is taken from Booch's book.

8© Wolfgang Emmerich, 1998/99

Simplifying Complex Systems

■ Usefulness of abstractions common to
similar activities, e.g. driving different kinds
of motor vehicle

■ Multiple orthogonal hierarchies e.g. structure
and control system

■ Prominent hierarchies in object-orientation
• “class structure”
• “object structure”

■ e. g. engine types, engine in a specific car

9

• As an example for these different hierarchies and their
relationships, this slide represents the relationship between two
different hierarchies: a hierarchy of objects and a hierarchy of
classes. It is of no concern at the moment what the precise
difference between a class and an object is; they will be
distinguished from each other in the next week's lecture.

• The class structure defines the 'is-a' hierarchy, identifying the
commonalities between different classes at different levels of
abstractions. Hence class C4 is also a class C1 and therefore has
every single property that C1 has. C4, however, may have more
specific properties that C1 does not have; hence the distinction
between C1 and C4.

• The object structure defines the 'part-of' representation. This
identifies the composition of an object from component objects, like
a car is composed from wheels, a steering wheel, a chassis and an
engine.

• The two hierarchies are not entirely orthogonal as objects are
instances of certain classes. The relationship between these two
hierarchies are shown by identifying the instance-of relationship as
well. The objects in component D8 are instances of C6 and C7

• As suggested by the diagram, there are many more objects then
there are classes. The point in identifying classes is therefore to
have a vehicle to describe only once all properties that all instances
of the class have.

• We are going to consider next, how do we approach the problem of
analysing some object or situation, as yet undefined?

9© Wolfgang Emmerich, 1998/99

C1

C2

C3

C4

C5

C6

C7

D1

D2 D3

D4

D5 D6

D7

D8

Class vs. Object Structure

Objects

Classes

10

• When we devise a methodology for the analysis and design of
complex systems, we need to bear in mind the limitations of human
beings, who will be the main acting agents, especially during early
phases.

• Unlike computers, human beings are rather limited in dealing with
complex problems and any method need to bear that in mind and
give as much support as possible. Human beings are able to
understand and remember fairly complex diagrams, though linear
notations expressing the same concepts are not dealt with so
easily. This is why many methods rely on diagramming techniques
as a basis.

• The human mind is also rather limited. Miller revealed in 1956 that
humans can only remember 7 plus or minus one item at once.
Methods should therefore encourage its users to bear these
limitations in mind and not deploy overly complex diagrams.

• The analysis process is a communication intensive process where
the analyst has to have intensive communications with the
stakeholders who hold the domain knowledge. Also the design
process is a communication intensive process, since the different
agents involved in the design need to agree on decompositions of
the system into different hierarchies that are consistent with each
other.

• Bearing in mind these limitations, these are the principles proposed
for object-oriented development: abstraction, hierarchy and
decomposition

• We will now look at these principles in more detail...

10© Wolf gang Emmerich, 1998/99

Approaching a Solution

■ Hampered by human limitations:
• dealing with complexities
• memory
• communications

■ Principles that will provide basis for
development:
• Abstraction
• Hierarchy
• Decomposition

11

• In general abstraction assists people's understanding by grouping,
generalising and chunking information.

• Object-orientation attempts to deploy abstraction. The common
properties of similar objects are defined in an abstract way in terms
of a class. Properties that different classes have in common are
identified in more abstract classes and then an is-a relationship
defines the inheritance between these classes.

• Different hierarchies support the recognition of higher and lower
orders. A class high in the is-a hierarchy is a rather abstract
concept and a class that is a leaf represents a fairly concrete
concept. The is-a hierarchy also identifies concepts, such as
attributes or operations, that are common to a number of classes
and instances thereof.

• Similarly, an object that is up in the part-of hierarchy represents a
rather coarse-grained and complex objects, assembled from a
number of objects, while objects that are leafs are rather fine
grained.

• But note that there are many other forms of patterns which are
non-hierarchical: interactions, ‘relationships’.

• Both concepts, abstraction and hierarchy are associated, in
practice, with decomposition as it is shown on the next slide...

11© Wolf gang Emmerich, 1998/99

Abstraction & Hierarchy

■ Concepts of fundamental importance
■ Abstraction: assists people’s understanding

• grouping,
• generalising,
• ‘chunking’
of information or ideas.

■ Hierarchy:
• Recognition of higher and lower orders,
• Accumulation of attributes at higher level,
• Association of fewer attributes with lower level

and greater number.

12

• Decomposition is an important technique for coping with complexity
based on the idea of divide and conquer. In dividing a problem into
a subproblem the problem becomes less complex and easier to
overlook and to deal with. Repeatedly dividing a problem will
eventually lead to subproblems that are small enough so that they
can be conquered. After all the subproblems have been conquered
and solutions to them have been found, the solutions need to be
composed in order to obtain the solution of the whole problem.

• The history of computing has seen two forms of decomposition,
process-oriented and object-oriented decomposition. Process-
oriented decompositions divide a complex process, function or task
into simpler subprocesses until they are simple enough to be dealt
with. The solutions of these subfunctions then need to be executed
in certain sequential or parallel orders in order to obtain a solution
to the complex process. Object-oriented decomposition aims at
identifying individual autonomous objects that encapsulate both a
state and a certain behaviour. Then communication among these
objects leads to the desired solutions.

• Although both solutions help dealing with complexity we have
reasons to believe that an object-oriented decomposition is
favourable because, the object-oriented approach provides for a
semantically richer framework that leads to decompositions that are
more closely related to entities from the real world. Moreover, the
identification of abstractions supports (more abstract) solutions to
be reused and the object-oriented approach supports the evolution
of systems better as those concepts that are more likely to change
can be hidden within the objects.

12© Wolf gang Emmerich, 1998/99

Decomposition

■ Handling complexity on the principle of
‘divide and conquer’

■ Two forms of decomposition:
• process-oriented: according to steps / functions
• object-oriented: according to behaviour of

autonomous objects
■ Both valid, but current claims for superiority

of OO
• stronger framework
• reuse of common abstractions
• resilient under change

13

• To illustrate the three concepts of abstraction, hierarchy and
decomposition and validate the claim that object-orientation is
favourable, consider an example used by Jacobson (pp 135-141).

• As this example is discussed in depth in the course text, we refrain
from providing detailed notes for the next four slides, including this
one.

13© Wolf gang Emmerich, 1998/99

Transaction

Get
transaction

Open Withdraw

Passbook
Open

Checking
Open

Bonus
Open

Passbook
Withdraw

Checking
Withdraw

Bonus
Withdraw

Passbook
Deposit

Checking
Deposit

Bonus
Deposit

Deposit

A function/data composition

14

14© Wolf gang Emmerich, 1998/99

An object-oriented Decomposition

Other object(s)

Open
Deposit

Withdraw

Account

ihs ihs
ihs

Passbook
Account

Checking
Account

Bonus
Account

ihs

15

15© Wolf gang Emmerich, 1998/99

Market
Open

Market
Deposit

Market
Withdraw

Transaction

Get
transaction

Open Withdraw

Passbook
Open

Checking
Open

Bonus
Open

Passbook
Withdraw

Checking
Withdraw

Bonus
Withdraw

Passbook
Deposit

Checking
Deposit

Bonus
Deposit

Deposit

Adding a new Market Account

Deposit

16

•

16© Wolf gang Emmerich, 1998/99

Market
Account

Other object(s)

Open
Deposit

Withdraw

Account

ihs ihs
ihs

Passbook
Account

Checking
Account

Bonus
Account

ihs

Adding a new Market Account

17

• Booch presents a model of object-oriented development that
identifies several relevant perspectives.

• The classes and objects that form the system are identified in a
logical model. For this logical model, again two different
perspectives have to be considered. A static perspective identifies
the structure of classes and objects, their properties and the
relationships classes and objects participate in. A dynamic model
identifies the dynamic behaviour of classes and objects, the
different valid states they can be in and the transitions between
these states.

• Besides the logical model, also a physical model needs to be
identified. This is usually done later in the system's lifecycle. The
module architecture identifies how classes are kept in seperately
compileable modules and the process architecture identifies how
objects are distributed at run-time over different operating system
processes and identifies the relationships between those. Again for
this physical model a static perspective is defined that considers
the structure of module and process architecture and a dynamic
perspective identifies process and object activation strategies and
inter-process communication.

• Object-orientation has not, however, emerged fully formed. In fact it
has developed over a long period, and continues to change. We
will briefly sketch the history of object-orientation on the next slide.

17© Wolf gang Emmerich, 1998/99

Class structure
Object structure

Class structure
Object structure

Model of OO Development

Module architecture
Process architecture

Class structure
Object structure

Logical
Model

Physical
Model

Static Model
Dynamic Model

18

18© Wolf gang Emmerich, 1998/99

Simula-67

Information Hiding

Sun ONC

Programming LanguagesDistributed Systems Software Engineering

Time

1970

1980

1990

DCOM UML

DCE

COM

Smalltalk

Eiffel

CORBA

C++

OOAD

Java

History of Object-Orientation

19

• This and the next two slides compare object-oriented and
structured methods. This comparison has already been touched on
from a more general perspective when we compared functional and
object-oriented decompositon but now we shall try to get it down to
the point.

• The problem with structure-oriented methods, such as SSADM,
Structured Analysis or SADT, is that they treat functions (i.e. the
behaviour) of the system differently from the data (i.e. the
information held somewhere within the system).

• This complicates maintenance and the evolution of a system as
both data and functions need to be changed. Moreover it is more
difficult to isolate changes. If a certain aspect has to be changed,
this almost certainly involves both the change of data structures
and of algorithms. Finally the change of algorithms and data
structures in structural methods often involves a number of
subsequent changes to places where these data structures are
used as well.

• Object-oriented decomposition, on the other hand has evolved from
the idea of information hiding which significantly contributes to the
changeability of the system as motivated on the next slide...

19© Wolf gang Emmerich, 1998/99

Structured Methods

■ SSADM (Cutts 1987), SA (de Marco 1978),
SADT (Ross 1977).

■ Existing structure methods treat separately :
• functions (behaviour) and
• data (information held)

■ Problems:
• Difficulties with maintenance (because need

knowledge of data storage)
• Division of knowledge (whereby “what” is

transformed into “how”)
■ Instability of functions

20

• Object-oriented decompositions of systems tend to be better able
to cope with change. This is because they manage to encapsulate
those items that are likely to change (such as functionality,
sequence of behaviour and attributes) within an object and hide
them from the outside world. This provides the advantage that the
outside cannot see them and therefore cannot be dependent on
them and does not need to be changed if these items change.

• Also object-oriented decompositons are closer to the problem
domain, as they directly represent the real-world entities in their
structure and behaviour.

• The abstraction primitives built into reuse have a huge potential of
reuse as commonalities between similar objects can be factored
out and then the solutions can be reused.

• Finally, object-orientation has the advantage of continuity througout
analysis, design implementation and persistent representation.

20© Wolf gang Emmerich, 1998/99

Object-Oriented Methods

■ Better able to cope with change
Item Freq. Of Changes
Object from application Low
Long-lived information structures Low
Passive object’s attribute Medium
Sequence of behavior Medium
Interface with outside world High
Functionality High

■ OO focuses analysis on problem domain
■ Promotes reuse
■ Continuity of representation

21

• Unfortunately, there is no single object-oriented analysis and
design method that we could readily teach you and this slide lists
some of the proposed methods.

• For this course we have selected Ivar Jacobson´s object-oriented
software engineering approach because it supports use case
scenarios.

• We largely agree with industry that these scenarios are particularly
useful during the elicitation of complete user reqirements. OOSE
has domain focus built into it and is integrated in the process.

• We should, however, note that we are going to use the unified
modelling language notation. UML is currently being developed at
Rational, a major consulting company in the US and also the
vendor of the market leading OOAD environment. Grady Booch,
Ivar Jacobson and James Rumbaugh are jointly working on the
modelling language. While we are giving this lecture, UML is being
evaluated by the Object Management Group to become the de-
facto industry wide notation for object-oriented modelling.

• It is very likely that the methods presented so far in the various
books identified at the beginning will be revisited by their authors
and be expressed in terms of the Unified Modelling Language.

• Although UML is an important consolidation step forward in the
maturation process of object-orientation, it will not be a silver bullet.
As the next slide suggests, there are also problems inherent to
UML.

21© Wolf gang Emmerich, 1998/99

Suggested object-oriented Methods

■ Coad & Yourdon (91) for OOA
■ Booch (94) also for OOA
■ Jackson (83) for system design
■ Jacobson (92) OOSE
■ Approach of this course based on Jacobson

because employs ‘use cases’ throughout
• essential user role
• focus on domain
• integration in process

■ All likely to be superseded by ‘retreads’
employing the UML

22

• Although object-orientation is very favourable to reusing
requirements, parts of the design and implementation, large-scale
reuse has not yet been achieved. We believe that this is not
necessarily only a problem of object-orientation, but also of the
mindset of many software professionals that do not believe in
anything they have not developed themselves.

• As there is little demand for reuseable components a market for
components has not yet been established. Vendors are scattered
and their products are rarely standardised and therefore are not
exchangeable. A notable exception is the standard template library
that has been standardised last year by the ANSI.

• With the possibility of deploying previously developed components
from reuse library, whether bought off the shelve or built inhouse,
the problem of configuration management arises which has not yet
been fully understood.

• Also a considerable amount of retraining of staff is required before
object-oriented projects start to fly and industry is still in the
process of building up an experience base.

• As a member of a development team (whether student, academic
or commercial) you may have your mind made up for you, but
essential to recognise true status of ideas and techniques.

22© Wolf gang Emmerich, 1998/99

Drawbacks of OO

■ Large scale reuse not yet achieved

■ Few available reusable libraries

■ Managing reusable libraries is a problem

■ Extensive retraining before pervasive

23

23© Wolf gang Emmerich, 1998/99

Complex
Software
System

Complex
Real-world

System

Functional
decomposition

OBJECT
ORIENTATION

Abstraction Hierarchy Decomposition

Summary

• This picture summarises the principles that we have outlined in this
week's session. As software engineers, we are interested in finding
principles for the mapping of complex real-world systems into
supportive complex software systems.The principles we have
suggested this week are abstraction, hierarchy and decomposition.
They are deployed in both functional and object-oriented methods,
but the latter seem to be favourable due to their support for
change.

• The next lecture will return to principles of object-orientation und
discuss them at a sufficient level of detail.

• Your first tutorial addresses the principles of abstraction, hierarchy
and decomposition.

• The following literature has been referenced throughout the notes
for this week, which we would recommend as additional
background reading.

• [CS90] P. Checkland and J. Scholes: Soft systems
methodology in action. Wiley, 1990.

• [Gold85] A.Goldberg: The Language and its Implementation.
Addison-Wesley, 1985.

• [GHJV94] E. Gamma and R. Helm and R. Johnson and J.
Vlissides. Design Patterns - Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

• [LZ74] B.Liskov and S.Zilles: Programming with Abstract Data
Types, SIGPLAN Notices 9(4):50-55, 1974.

• [Parn72] D.C.Parnas: A Technique for the Software Module
Specification with Examples. CACM 15(5):330-336, 1972.

