
4-1

• Last week, we have discussed the derivation of an hierarchical class diagram
from use cases and a list of domain objects that were produced during
requirements modelling. The class diagram produced during analysis gives a
logical perspective on objects in the problem domain. The classes were
directly derived from problem domain objects and use cases. Moreover, we
identified different roles for the classes. Interface classes were identified that
take input from actors, be they humans or other programs. Entity classes
model how state information is represented for the various domain objects and
control classes were included as glue between interface and entity classes.

• The class diagram produced during the analysis stage, however, neglects
important properties, for instance of the programming language that is used
for implementing the classes. Constraints introduced on classes by the
programming language and other influencing factors, therefore, need to be
taken into consideration in order to compose an executable system.

• Moreover, the analysis class diagram is still rather abstract on operations. It
identifies associations between clases, but does not indicate which operations
use these associations in order to stimulate execution of other classes'
operations. It also does not give indications on the use of other operations in
the algorithms that define how operations are implemented. Without
formulating these algorithms, we cannot be certain that the class diagram is
complete, i.e. includes all necessary operations.

• Hence the question that we are going to answer in this lecture is: How is the
result of the analysis class diagram transformed into an implementable class
diagram and how do we specify dependencies between operations.

1© Wolf gang Emmerich, 1998/99

D50: Advances in Software Engineering
Design Model

Wolfgang Emmerich

4-2

• In this lecture, we are again following the model-based approach of Jacobson,
though we aim at giving a more specific step-by-step approach, therefore we
will be showing again the ‘road map’ relating the two views.

• The primary purpose of design stage is to translate and complete the ‘logical’
model provided by the analysis stage into a more concrete level of
abstraction, which reflects the implementation environment and can be
implemented directly in code.

• During the design stage we use two important new representations, first the
‘sequence diagram’ showing the interaction of a set of objects in temporal
order. In OOSE this set of objects belongs, most importantly, to a particular
use case.

• The principal design element is the class, synonymous with a block in OOSE,
and the operations incorporated into it complete the picture of its export
interface (its outside view). In addition to the operations that were identified in
the analysis stage, operations to be included into the design class diagram are
derived, principally, from sequence diagrams.

• The second new representation, the ‘state diagram’, describes the temporal
evoluation of an object of a given class in response to other objects inside or
outside the system. This representation will be the principal subject of the
second lecture on design that we will give next week.

2© Wolf gang Emmerich, 1998/99

Lecture Overview

■ Relationship between analysis and design
■ Stages of design
■ Impact of implementation environment
■ Definition of sequence diagrams
■ Sequence diagrams for use cases
■ Creation of class interfaces
■ State diagrams

4-3

3© Wolf gang Emmerich, 1998/99

User
Reqs

System
Reqs

Detailed
Design

Coding

Archit.
Design

System
Integr.

Pre-Prod.
Test

Stages of Development Process

Project and Risk Management
System Management

Version and Configuration Management
Quality Management

• This slide shows our ‘road map’ again in order to highlight the aspects
we discuss in this lecture and indicate how they fit into the overall
object-oriented development process.

• Last week, we have shown how a class diagram is derived that is
hierarchically organised into nested packages. We have also indicated
how the use case description that was produced in the requirements
stage is elaborated and formulated in terms of domain objects and
their operations. The design stage starts from these two
representations.

• The broken line between analysis and design marks the essential
boundary between the conclusion of the analysis phase and the
beginning of a detailed design that takes into account the
implementation environment, as defined in the initial requirements
documents (not shown).

• This week we are going to introduce sequence diagrams that show for
each use case the order in which objects send messages to other
objects in order to stimulate operation executions. This exercise will
reveal missing operations in the class diagram that will be added to
the design class diagram.

• Let us now look at the first steps that are necessary during the design

4-4

• The first step in the design stage is the identification of the implementation
environment. The influencing components of the environment are, for
instance, the target programming language, the user interface management
system, class libraries that are available for reuse, distribution infrastructures
and databases for persistent storage of entity objects.

• The second design step is the translation of the analysis class diagram into a
design model class diagram. This requires revisions to make the class
diagram implementable and cohesive at architectural level. Unfortunately, we
cannot discuss this step in sufficient detail here because a full appreciation
requires in-depth understanding of object-oriented programming languages,
distributed object infrastructures, user interface construction and object
databases.

• Designing the flow of control involves the determtion of messages that are
passed between objects. This is done using ‘sequence diagrams’ for each use
case.

• With the help of sequence diagrams we can then detect missing operations
and complete the operations defined for classes. Also the sequence diagrams
enable us to check which parameters are passed along with messages and
we can check the available operations against that. Hence, sequence
diagrams enable us to complete the outside view, the ‘export interface’ of
each class.

• In next lecture we will consider in detail ‘state machines’ and ‘state diagrams’,
powerful concepts in their own right, used for the behavioural design of the
class.

• The final product is the design class diagram (in ‘packaged’ form) which will
be the basis for direct implementation in code.

4© Wolf gang Emmerich, 1998/99

Producing a Design Model

■ Inputs
■ Actions

16 Identify implementation environment
17 Model initial design class diagram
18 Design control flow
19 Define class interfaces
20 Model classes state diagram
21 Finalise design class diagram

■ Outputs
■ Notations

4-5

• The design takes its inputs not only from the immediately preceding analysis
stage, but also from the initial set of requirements specifications. These initial
documents will include basic information about the implementation
environment.

• The design stage heavily uses class diagrams that were introduced already.
The notation used for the class diagram in the analysis phase does not differ
from the one used for the dsign phase. The contents of the design class
diagram, however, might be considerably different from the one produced in
the analysis stage.

• The design stage uses two new types of diagrams, sequence diagrams and
state diagrams. The former is introduced in this lecture and the latter will be
introduced next week. The UML provides notations for both the new types of
diagram. The sequence diagram in UML is very close to the ‘interaction
digram’ in Jacobson's OOSE. The origin of the state diagram is in
Rumbaugh's OMT method and Rumbaugh himself borrowed many concepts
from David Harel's state charts [Hare87].

• The most important output of the design stage will be a class diagram that is
directly implementable in an object-oriented programming language. Moreover
developers create a sequence diagram for each use case and a state diagram
for each class.

• Let us now take a closer look at the relevant parts of the environment that
influence the remodelling of the class diagram...

5© Wolf gang Emmerich, 1998/99

Design Model Contents

■ Inputs:
• Requirements specifications relating to

implementation environment
• Analysis model class diagram
• Use case descriptions

■ Notations introduced:
• sequence diagram
• state diagram

■ Outputs:
• sequence diagrams [diagram x use case]
• state charts [diagram x class]
• complete design model class diagram

4-6

• The target operating system has an influence on the design. Some operating systems (such
as the Solaris 2.5 OS installed on CSD machines) support multi-threading, for instance, which
means that systems can use concurrent threads and nead not necessarily perform every
operation synchronously.Other OS (such as Microsoft's DOS) do not have this capability.

• The programming language used for implementing the design has probably the highest
influence on the way the design is used. If the programming language does not support
multiple inheritance (e.g. Smalltalk) multiple inheritance that was used in the analysis diagram
must be resolved into single inheritance in the design class diagram. Similarly, some
programming languages support the redefinition of operation signatures (e.g. Eiffel) while
others do not (e.g. C++). In general we must make sure that the design only uses those
concepts that are directly mappable to the programming language. Even within different
implementations of a programming language there might be differences and the design should
only rely on widely available and standardised concepts of the programming language.

• Some of the interface classes are used by humans and a user interface must be constructed.
This is typically done by relying on a user interface management system (e.g. X-Windows,
OSF/Motif, OpenLook, OpenStep) and the design class diagram must be adapted to the
particular UIMS that is in use.

• Other interface classes represent interfaces to existing (legacy) programs and an intergration
mechanism, such as OMG/CORBA must be deployed for achieving an integration, this
requires the adaption of interface classes to the particular integration mechanism at hand.

• Some objects will have attributes whose values must survive the termination of the system
and therefore be stored on persistent storage. Typically database management systems
(DBMSs) are used for that purpose. Which particular type of DBMS is used (e.g. an object
database or a relational database) has a serious impact on the way the system is designed.

• It might also be the case that existing class libraries (e.g. the Standard Template Library) can
be reused and this will simplify the implementation. However, the design then has to identify
classes in these libraries and the way in which they are to be deployed.

• Non functional requirements for performance, or restrictions upon it such as memory
availability, must be addressed by the design.

• Finally managerial factors can affect the design process, e.g. division of labour between sites,
different competences of teams, standard procedures or the decision of a staged deployment.

6© Wolf gang Emmerich, 1998/99

Impl. Env.

Analysis

Design

Implementation Environment Factors

■ Target operating system
■ Programming language
■ Deployed UIMS
■ Available system integration mechanisms
■ Underlying DBMS
■ Available reuse libraries
■ Non-functional requirements
■ Development process

4-7

• The accomodation of environment specific factors will lead to the addition
and/or deletion of classes as well as to classes whose generalisation
relationship is changed, that have additional operations and so on.

• Although the class hierarchy might be transformed considerably, the
semantics of classes identified during the analysis stage should not be
affected. Classes ought just to be notated in a way that is more convenient to
implement. Therefore, functional changes, because they imply changes to the
analysis model, are suspect. Functional deletions are equally suspect, as are
changes that result in splitting or joining blocks for non-environmental
reasons.

• Besided accomodating the practicalities of the environment, the change from
analysis to design models also involves an important change of perspective as
we discuss on the next slide...

7© Wolf gang Emmerich, 1998/99

Changes for Environment

■ Add, delete, or change classes (OOSE blocks)
■ Change associations , e.g.

• extensions to stimuli
• inheritance to delegation

Impl. Env.

Analysis

Design

4-8

• - Semantic differences between models are:

Analysis model

• logical model

• conceptual picture of system

• frozen at end of analysis process

Design model

• abstraction of how system will be built

• reflecting implementation environment

• Initially there can be a direct translation creating a model which is very similar,
particularly having defined ‘entity’ ‘control’ and ‘interface’ classes. However,
an important shift has been made to a practical abstraction whilst retaining
notation.

8© Wolf gang Emmerich, 1998/99

Analysis
Model:

logical,
conceptual,

frozen

Design
Model:

a practical
abstraction

Analysis & Design Models in UML

4-9

• The transfer of the class diagram to a practical abstraction involves activities
of ‘encasulation’, as defined earlier but at an architectural level. The aim of
achieving encapsulation at an architectural level is to isolate dependencies on
external components, such as a UIMS or a DBMS which are likely to change
(for instance if the same system has to be deployed for another customer).

• Often packages are used to achieve encapsulation at an architectural level. In
the user interface management system example, we would aim at
encapsulating the user interface management system in a user interface
package that implements all the interface classes for a human/computer
interface. If we make sure that not a single definition of the UIMS becomes
visible to the outside of that package we only have to adapt the user interface
package if we have to port the system to another UIMS.

• Also we aim at designing the classes in a way that its coupling with other
classes. The motivation for low coupling derives from the fact that with every
additional dependency a class becomes more reliable on its environment and
firstly cannot be reused without the other classes it depends on and secondly
incremental development becomes more and more difficult because the
minimal increment of the system is determined by the transitive closure of the
dependency association.

• With normalisation we mean, for instance, that certain naming schemes for
attributes and operations are obeyed throughout all classes or that the
interfaces of the class are as minimal as possible.

9© Wolf gang Emmerich, 1998/99

Objectives of Class Diagram Design

■ Encapsulation
• at architectural level
• to provide cohesive packages

■ Normalisation
• of class structure
• to provide implementable interfaces with low

coupling

4-10

• Having translated the analysis class model and adapted it to the environment
and begun the necessary revisions, there follows a new form of design
activity.

• We have convinced ourselves at the analysis stage that the set of classes we
have identified are sufficient for all the use cases. In the design stage we
undertake a similar activity, though at a more concrete level of abstraction.
We will design the control flow between different objects and convince
ourselves that

• we have all the operations that are needed for the implementation of the
use cases we have identified

• that the objects can identify each other based on the associations we
have identified.

• To achieve that we are going to model 'sequence diagrams' for each use
case. Such a diagram identifies objects that occur within the use case and
indicates the temporal order in which messages are exchanged between
objects in order to stimulate operation executions.

10© Wolf gang Emmerich, 1998/99

?
?

?

?

Translate from
analysis model

Adapt to environment
and revise

Design
of control flow

Initial Stages of Design

4-11

• The class diagram so far only indicates associations between classes, their
names, direction and multiplicity. We have an initial set of operations derived
for entity classes but we are not yet certain whether these operations are
sufficient (they almost certainly are not!)

• Moreover, it is still undefined which operation traverses along which
association and it is equally undefined which operation uses other operations
in order to implement the behaviour associated with it. This is why there are a
lot of question marks attached to associations.

• The construction of sequence diagrams provides the essential first step in
clarifying the messages passed between all the objects involved. At this point
the use cases again take on a central role, by providing views of exactly how
parts of the system should interact. These views are modelled in sequence
diagrams. The next slide outlines the notation provided in UML for these
diagrams.

11© Wolf gang Emmerich, 1998/99

<< interface >>

Customer Panel

<< interface >>

Crate slot

<< interface >>

Bottle slot

<< interface >>

Can slot

<< interface >>

Receipt button

<< entity >>
Receipt basis

<< control >>
Deposit Item

Receiver

<< entity >>
Crate

<< entity >>
Can

<< entity >>
Bottle

<< entity >>
Deposit Item

Name: String
Deposit value: ECU
Daily total: Integer

Create ()
setValue (integer)
Increment ()

Deposit

<< interface>>
Receipt printer::Printer

<< control >>
Alarm::Alarmist

‘Deposit’ Package in Design Model

4-12

• A sequence diagram shows a set of objects and the temporal order in which
stimuli are sent between them. Stimuli can be sent within (a message that
leads to an operation execution) and between processes (a request for a
remote operation invocation) and they are not distinguished at this stage.

• Sequence diagrams are a means for showing a ‘scenario’, a particular set of
interactions among objects in a single execution of the system. It is essential
because the isolated behaviours of individual objects will not give a complete
view of a complex system.

• Objects appear as vertical lines. A very thin box (or a broader line) is shown
when an object has the thread of control, otherwise the single line represents
‘created but in a waiting state’.

• Events are one-way transmissions of information. They correspond to the
OOSE concept of stimuli. Events are marked by a labelled horizontal arrow.
Arrows may also slope down (from left to right) when sending and receiving
times are distinct (e.g. during a remote CORBA operation request).

• Normally only ‘calls’ to other objects are shown. The returns are implicit
(usually when the object ceases to be in the thread of control), but these can
be shown explicitly as leftward arrows (for instance if asynchronous
communication is assumed). It is also possible to distinguish between ‘in
scope’ and ‘in control’ by blocking in sections of the thin boxes.

• Large cross ‘X’ at end of line can show destruction (usually by external
command, but in this example we have implicit self-destruction).

• We now return to OOSE to see how sequence diagrams are used...

12© Wolf gang Emmerich, 1998/99

Sequence Diagrams in UML

■ Shows interactions among a set of objects in
temporal order

■ Objects appear as vertical lines
■ Events marked by labelled horizontal (or

slopped) lines

4-13

13© Wolf gang Emmerich, 1998/99

Sequence Diagram Notation

:DepositItem
Receiver :ReceiptBasis can:DepositItem

item()
exists()

insert()

printReceipt()

:CustomerPanel

asynchronous
message

(remote)
procedure

call

lifelineobject
activation

synchronous
Message

ObjectName
Type

object
deletion

• This slide shows the various graphical notations of sequence
diagrams.

4-14

• Sequence diagrams are specifications at the instance level. Hence we will
have to take archetypical instantiations of use cases, i.e. scenarios, and
formalise these as sequence diagrams. This will reveal very useful information
that we exploit for completing the design class diagram. Most notably it will
identify operations that have not yet been included and that therefore have to
be added to the class diagram.

• We do so by first identifying the objects (i.e instances of classes identified in
the analysis class diagram) that are involved in the scenario and draw them at
the top edge of the diagram. The system border identifies stimuli that come
from outside the system (e.g. a user or another system). We will omit that
border later.

• This slide displays merely the ‘skeleton’ of a scenario derived from the
returning item use case that we have used as a running example. The
sequence diagram will be continued on the next slide...

14© Wolf gang Emmerich, 1998/99

Time

System
border

Returning Item (Skeleton)

rcv:Deposit
item receiver

di:Deposit
item

rcpt:Receipt
basis

cp:Customer
panel

4-15

• The next stage is the identification of an algorithm that describes how the
scenario is performed. The vertical boxes are used to distribute the tasks
identified in the algorithmic specification over objects. Length and vertical
position of boxes may not be exact at this point.

• The text on the left is a ‘pseudo code’ version of the operations involved in the
use case. The generation of this text is part of what Jacobson terms ‘use case
design’, i.e. the formalisation of the use case as a step towards implementable
code. This text is not part of the diagram defined in UML, but provides a useful
and non-contradictary supplement.

• Next we need to identify how the different objects communicate. This is based
on stimuli...

15© Wolf gang Emmerich, 1998/99

Customer presses start button
Sensors activated

DO
 New deposit item is inserted
 Measure/check if this kind of
 item is acceptable

 NoReceived:=NoReceived+1
 IF found THEN create a
 new daily Amount:=

daily Amount+1

WHILE items are deposited

rcv:Deposit
item receiver

di:Deposit
item

rcpt:Receipt
basis

cp:Customer
panel

Returning Item (Skeleton + Operations)

4-16

• This slide displays a more complete version of a 'Returning Item' scenario that
also shows the timing of events.

• We can see that the scenario is activated by a 'start()' event that is released
by the customer pressing the start button. It leads to the execution of the
'start()' operation in the customer panel object 'cp'. That operation creates a
deposit item receiver object 'rcv' and activates the external sensors. It then
waits for items to be inserted.

• A 'newitem()' event occurs from the outside whenever a customer inserts a
new deposit item into the recycling machine. This event leads to the execution
of operation 'newitem()' in 'cp'. The panel 'cp' then delegates the execution to
the deposit item receiver object 'rcv'. It checks whether the item inserted is a
proper recycling item by invoking operation exists from the deposit item object
'di'. If the item is known as a recyclable object, the item is inserted into the
receipt basis object 'rcpt' to make sure that a description of the object is
included if the customer wishes to obtain a receipt. The length of the list of
received items internally managed by 'rcpt' will represent the 'noReceived'.
Finally the daily amount of items returned for a particular class of deposit
items is incremented.

• Next, we need to consider a number of issues in defining stimuli...

16© Wolf gang Emmerich, 1998/99

start()

activate() create()

new
item() item() exists ()

insertItem
(Item)

incr()

Returning Item (+ Stimuli)

Customer presses start button
Sensors activated

DO
 New deposit item is inserted
 Measure/check if this kind of
 item is acceptable

 NoReceived:=NoReceived+1
 IF not found THEN create a
 new daily Amount:=

daily Amount+1

WHILE items are deposited

rcv:Deposit
item receiver

di:Deposit
item

rcpt:Receipt
basis

cp:Customer
panel

4-17

• The naming of events (aka oprations) should be done with great care. The
ease of understanding of these sequence diagrams and the later maintenance
of the system very much depend on the fact that names give the reader a
clear idea as to what events/operations mean. One should try to establish and
obey naming conventions and, for instance, use the same name for similar
behaviour in different classes.

• Also parameter lists should be kept as small as possible. Lengthy parameter
lists are an indication that the operation is not really atomic but rather
performs many different tasks. Then the operation should be split up into more
simple operations. Simpler operations are easier to use and the probability
that they can be reused increases.

• All naming issues are associated with the needs for understanding and
reusability. Similar considerations apply to the requirement to minimise the
number of parameters asociated with particular messages.

• Creation of objects is the result of specific events. The creation of an object in
an object-oriented programming language is done by sending a message to a
class (rather than an object). The class will execute a special creation
operation (called constructor), perform the initialisations specified in the
constructor and return the identification of the newly created object as a result.

• Modelling of sequence diagrams should start with a scenario that reflects the
basic course of events in the use case. When that has fully been understood
will the designer be in a position to model more special and exceptional
scenarios.

17© Wolf gang Emmerich, 1998/99

Defining Stimuli

■ Issues to consider :
• name plus minimum number of parameters
• same name for similar behaviour
• creation also by stimuli
• basic case designed first
• two types :

– messages inside one process
– signals between processes

4-18

• The sequence diagram on the left-hand side follows a decentralised control
pattern. It is decentralised, because the depth of the call stack is considerable
(five in this example). This implies that many operations are involved in the
thread of control.

• The right-hand side sequence diagram follows a centralised control pattern as
the object displayed on the left of that diagram keeps full control and the
objects that it stimulates return control immediately rather than stimulating
other objects.

• Decentralised contol is appropriate if operations have a strong connection with
hierarchical or fixed temporal relationships (as in ‘Returning item’). Centralised
pattern is more suitable if operations can change order; new operations can
be inserted.

• Next, we review how control flow directives can be included in sequence
diagrams...

18© Wolf gang Emmerich, 1998/99

"Stair" decentralised

for well-structured sequence
of operations

"Fork " centralised

for variable sequence
of operations

Sequence Diagram Structures

4-19

• A scenario is an instantiation of a use case and as such it only has a single
flow of events. Conditions and loops have been checked beforehand and are
therefore not reflected in the diagram. Although this keeps the diagram simple,
it is not as expressive as it could be and many sequence diagrams are
needed to provide a full cover of the possible sequence of events in a use
case.

• In order to increase the expressiveness (and at the same time reduce the
number of sequence diagrams needed), UML includes facilities for expressing
control structures, such as conditions and loops.

• The slide above displays the UML notation for a condition. The guard
condition appears in square brackets. The expression must be unambiguous
(In the example X=0 not included and therefore no branch in this case)

• As you have seen now, sequence diagrams provide an essential means for
elaborating which operations are needed and how they cooperate towards the
implementation of the system (as required in different use cases).

19© Wolf gang Emmerich, 1998/99

[x>0]foo(x)

0p() ob1:C1

ob3:C3 ob2:C2

[x<0]bar(x)

Sequence Diagrams & Conditions

■ Shows general
interaction pattern

■ Conditional shown
by splitting message
arrow (and return)

■ Pre-existing objects
as broken lines

4-20

• Next we can exploit the sequence diagrams in order to complete the class
diagrams. In particular we use the information about events and their
parameters in order to devise operations and their signatures in the class
diagram.

• We can also use it to define the public and the private parts of each class.
Every operation that needs to be executed in response to an event sent by
another object has to be public. We can freely add private operations in order
to use them in the implementation of the public operations. We then have
completed the first interface design.

• Jacobson suggests to start the implementation of classes identified in the
design class diagram only when the class interfaces (i.e. the public
operations) begin to stabilise. This means in particular, that it is not necessary
to fully design the whole class diagram before the first classes are coded.

• But it might still be necessary to perform further work on the design class
diagram, in particular on the characteristics of individual classes, rather than
use cases.

20© Wolf gang Emmerich, 1998/99

Receipt Basis
insertItem(item)
printOn(oStream)
delete

ReceiptBasis

create;
insertItem(DepositItem);
printOn(oStream);
delete;

itemList: list (ReturnedItem)
sum: ECU

Detailing the Design

4-21

• The elements of the design that we have considered already are :

a) the set of sequence diagrams, each representing the temporal interaction
of all the objects in a single scenario, i.e an instance of a particular use
case, and,

b) the elaborations made to the class diagram, in the form of operations
derived from the sequenced diagrams and incorporated into the
interface of each class.

• In preparing the next steps, we need to consider both the ‘system in use’ (as
represented in the various sequence diagrams) and the ‘objects in the system’
and how each will evolve in response to external stimuli.

• State diagrams (the subject of the this lecture) provide the essential means of
describing the dynamic behaviour of a class, via the temporal evolution of an
object in response to interactions with other objects inside or outside the
system.

• The state diagrams are a mathematical well defined language. They are
based on the concept of finite state machines. Hence, we are going to
introduce this concept first...

21© Wolf gang Emmerich, 1998/99

Design elements already considered

■ Design outputs so far :
• set of sequence diagrams [diagram x use case]
• elaborated class diagram

■ Next steps change perspective
• from class outside to inside
• from instance to type-level of abstraction

■ Need for further understanding of each class
■ Development of state diagrams to define

class behaviour
■ But this can be quite complex

4-22

• This example and other material for this lecture have been taken from
[Davis90].

• The problem is that with the specification techniques that we have seen so far
we cannot unambiguously specify the behaviour of the system. Scenarios are
not suitable as we might have to include a very high number of scenarios in
order to completely describe the system.

• Such questions often arise in dynamic or reactive systems in which input data
continues to arrive during processing to effect the program’s outcome, so-
called ‘real-time’ systems.

• Moreover, use cases are described in natural language (usually English in this
country) and the use of a natural language often leaves room for different
interpretations. This is particularly inapropropriate in situations where the
behaviour of the system must be specified very precisely (think of the bulbs
and buttons as part of an aircraft control panel). In these, so called safety-
critical systems, imprecisely specified behaviour risks human lives.

• What means are their for specifying and representing behaviour precisely?

22© Wolf gang Emmerich, 1998/99

Tackling Complexity - Example

■ A system containing four buttons (B1 - B4) and two
lights (L1 - L2)
• Since the last powering on, if B2 has been pushed more

often than B3, then L1 shall be lit.
• Since the last powering on, if B2 has not been pushed

more often than B3, then L2 shall be lit.
• At no time shall more than one light be lit.
• If either light bulb burns out, the other bulb shall flash on

and off in 2-second increments regardless of the number
of B2 and B3 presses. This flashing shall cease when B4
is pressed and restart when B1 is pressed. When the
malfunctioning bulb is replaced, the bulb shall cease to
flash, and the system shall return to its normal operation.

■ What is normal operation, if we don’t know whether
the system records B2 and B3 presses while a bulb
is broken ?

4-23

• Both use cases and sequence diagrams (called interaction diagrams in
OOSE) are concerned with the system in use. They display the flow of
messages according to different scenarios, potentially involving a number of
objects.

• UML also provides a ‘collaboration diagram’ which shows interaction between
a set of objects as nodes in a graph, thus emphasizing relationships rather
than temporal flow of behaviour shown in the sequence diagram. This has not
been included because firstly it has no counterpart in OOSE and secondly the
purpose of collaboration diagrams can equally well be met through sequence
diagrams.

• State diagrams come in various forms and provide powerful tools for the
design of the behaviour in complex systems.

• The concept of the ‘finite state machine’ underlies all state diagrams and
provides the theoretical means of defining the state of a system and its
reactions to new stimuli.

23© Wolf gang Emmerich, 1998/99

Specifying Complex Behaviours

■ Need to formally specify behaviour of:
• system in use
• objects in system

■ OOSE offers techniques
• use case diagrams, interaction diagram,
• state transition diagram

■ UML provides notations
• use case model, sequence diagram,
• collaboration diagram, state diagram

■ State diagrams provide essential means of
showing how a class of objects evolves in
response to external stimuli

4-24

• A finite state machine is a hypthetical machine which allows, for example, the
modelling of the behaviour of this class in the context of this lecture.

• The lecturer provides a series of inputs, causing actions of some kind of
action in the class, which then generates an output and, if the lecture is
effective, causes a permanent change in its state.

• Let us know consider the mathematical definition of finite state machines...

24© Wolf gang Emmerich, 1998/99

LECTURE

stimulus
(input)

stimulus
(output)

Modelling of States and Transitions

State of
CLASS

action

4-25

• A finite state machine (FSM) includes a finite set of states (S) one particular
element of that set is a starting state (s) and a subset F of S is designated as
the set of ending states. Finite state machines in general work on alphabets of
characters. For the purpose of this lecture, we can consider these alphabets
to denote a finite set of events. The core of any FSM then is the transition
function that defines for a pair consisting of a state and an event the
successor state.

• For the defnition of the semantics of an FSM machine, we need the concept of
a configuration, which denotes the current state and a sequence of events
that remain to be processed.

25© Wolf gang Emmerich, 1998/99

Finite State Machines

■ A formal model for states and transitions
■ A finite state machine FSM is a five-tuple

FSM=(S,A,σ, s, F) where
• i) S, is a finite set of states
• ii) A is a finite alphabet of events
• iii) σ: S´A -> S, a partial function of transitions
• iv) s ∈ S, a start state
• v) F ⊆ S, a set of ending states

4-26

26© Wolf gang Emmerich, 1998/99

FSM Execution Semantics

■ An FSM configuration is an element of SxA*
■ If FSM=(S,A,σ,s,F) is finite state machine then

i) A binary relation Γ is defined on configurations
by (q,w) Γ (q’,w’) ⇔∃α∈ A : (w=aw’) ∧ (s(q,a)=q’)

ii) Γ* defines the transitive closure of Γ.
iii)A sequence of events is acceptable by the finite

state machine if there is an ending state f ∈ F
such that (s,w) Γ* (f,e).

• The relation Γ gives the semantics to the FSM. It defines a single
step of execution. If the FSM is currently in state q and event α is the
next event that is to be processed the new state will be q' if σ(q,α)=q'.
The transitive closure of Γ denotes the set of reachable states and a
sequence of events is acceptable only if the state the application of
the sequence of events to the start state leads to an ending state.

• This notation for finite state machines is mathematically sound.
However, it is not an appropriate notation for humans to understand
these machines. We will now use state transition diagrams and state
transition matrices as notations whose semantics is formally defined
based on finite state machines...

4-27

• State transition diagrams are a direct representation of finite state machines.
States are represented as circles and labelled arrows between states denote
that the function σ is defined for the state where the arrow starts and produces
the state where the arrow leads to if the event occurs that is recognised by the
label.

• All ending states are denoted as a double circle and the starting state is
denoted as a circle where an open arrow head leads to (idle in the example
above). Note, that there are also special forms of finite state machines that
produce an output whenever a transition occurs. Outputs, if any, are given
after the event definition and the two are separated by a slash.

• The example displays states for a telephone. Initially, the telephone is in an
idle state. If the receiver is taken off the hook a dial tone will be played. If the
receiver is replaced the telephone will become idle again. If a number is
dialled of a phone that is busy, the busy tone will be played and the only
possible event is to replace the receiver onto the hook. If an idle number is
dialed the ringing tone will be played and as soon as the other party takes the
receiver off the hook the phone connection will be established.

• An alternative notation to state transition diagrams are state transition
matrices...

27© Wolf gang Emmerich, 1998/99

■ Graphical Notation for FSMs
• circle = state
• double circle = finishing state
• directed arc = transition two connected states
• label = input/output events
• hook = starting state

■ Example:
STD for
Making a
Phone Call

busy

dial
tone ringing

conn-
ected

idle off hook/
dial tone

dial idle number/
ringing tone

dial busy number/
busy tone

called party
off hook/
connected

on hook/
quiet

on hook/
quiet

State Transition Diagrams

4-28

• If any realistic system is modelled with state transition diagrams these
diagrams get very complex. The reason for this complexity is that finite state
machines have exactly one active state and that state has to be explicitly
modelled in the respective state transition diagram.

• In reality, however, states can be influenced by a number of different factors.
A telephone receiver can be either idle or it can be active. If it is active, it can
be playing a busy tone, a ringing tone or a dial tone. State transition diagrams
do not properly support the different levels of abstractions involved in this
example.

• This leads to an exponential growth in the number of states and transitions
needed and makes the resulting diagrams unmanageable.

• David Harel had to formally define the behaviour of a fighter aircraft
component (on behalf of the Isralian air force). He found that engineers and
pilots could easily understand state transition diagrams and searched for a
way to cope with their complexity rather than introducing a completely different
formalism nobody would be familiar with. The approach he took is, in fact,
based on the same that we suggested in the first lecture: abstraction.

• In the state charts that he suggested, he introduced facilities for considering
states at different levels of abstraction. He then introduced different notions for
composing abstract states from more concrete states which might have
internal state transitions embedded. These internal state transitions, however,
would be hidden at the more abstract level; hence he applied the principle of
information hiding also to modelling of states.

• The UML includes state diagrams as a notation for state charts. State
diagrams will be used to model the behaviour of objects and in particular the
state transitions of objects in response to events, internal or external to the

28© Wolf gang Emmerich, 1998/99

Motivation of State Diagrams

■ Real STD system models get very complex.
■ Reasons of complexity:

• STD system model by can only be in one state
• State is influenced by many factors
• All factors need to be considered leading to

exponential proliferation of states and transitions
■ State Diagrams manage complexity by

• Composition of states
• Concurrent substates
• Conditional transitions
• History states

4-29

• The representation of state charts in state diagrams takes the form of a
collection of nodes (the states) and directed edges (the transitions).

• A ‘scenario’, being an instance of a use case and an instance of the execution
of a system, illustrates, but ultimately cannot define, behaviour. It is a ‘slice’ of
system behaviour across state diagrams from multiple classes. The state
diagram provides the means for describing the temporal evolutions of an
object of a given class in response to interactions with other objects. Hence,
the state diagram subsumes the different sequence diagrams that model
scenarios from an object-level perspective.

• Each diagram is associated with one class, or with some higher level state.
Only a minority of classes undergo significant state changes necessitating
diagrams.

• The UML documention acknowledges the contribution of Harel. His important
extensions to state transition diagrams provide a useful basis for examining
the main elements of state diagram which can be modelled using the UML.

29© Wolf gang Emmerich, 1998/99

State Diagrams

■ A state diagram is
• a directed graph of states connected by

transitions
• a formal specification of the behaviour of a class

■ UML incorporates extensions to basic STDs
made by Harel in his State Charts:
• decomposition of states
• default entry states
• concurrent states
• conditions on transitions

4-30

• The basic concepts of state charts are applicable at all levels of abstraction,
althouth state diagrams in UML (and the related notation in OOSE) are
principally intended to describe the behaviour of objects at a type-level of
abstraction, i.e. in classes (or design blocks in OOSE).

• In defining an event, the emphasis is on its atomicity; it is a non-interruptible,
one-way transmission of information from one object to another, proceeding
independently (asynchronous).

• The current state of an object is determined by the event that triggered its last
transition and lasts until the next significant event.

• A transition may both a) cause a change of state and b) invoke object
operations. External transitions do a) and possibly b); internal transitions do b)
but not a).

• UML provides a multi-featured graphical representation for these concepts as
detailed on the next slide...

30© Wolf gang Emmerich, 1998/99

state A state B
event
causing

transition

STATE DIAGRAM CONCEPTS

■ Three fundamental ideas :
• event: an atomic occurrence at a point in time
• state: a period in time during which an

object is waiting for an event to occur
• transition: a response to an external event

received by an object in a certain state

4-31

• Each state appears as a rounded box with the name of the state and optional
state variables and triggered operations.

• A state variable is valid while the object is in the state and can be accessed
and modified by operations within the state.

• Operations, called ‘actions’, must be non-interruptible. They can be
implemented as private methods (a method is the implementation of an
operation in an object-oriented programming language) on the controlling
object. Operations can be preceded by the pseudo-event names, ‘entry’ and
‘exit’, effectively making the state into a self-contained module.

• The transition notation remains the same (directed arc), but the label has a
more complicated syntax, of which the event name, with any associated
parameters, is the principal component. Operations, possibly of other objects,
can also be triggered by transitions and are included as the final component of
the label. Other components are discussed below.

• States can also be composed of other states. For these composite states the
composition is drawn within the node representing the state. An example of
these composite states is shown on the next slide...

31© Wolf gang Emmerich, 1998/99

Typing Password

password:
String = “”

entry/ set echo
invisible
exit/ set echo
normal

NAME

state variables
{optional}
triggered
operations
{optional}

NAME
eventName
(arguments)
[condition]
^target.sendEvent
(arguments)
/ operations
(arguments)
{all optional}

type string
[valid]
/ logged on

Logged on

directory: home

entry/ display
message

Basic UML State Chart Notations

4-32

• This slide displays the first example of the application of abstraction in state
diagrams. At a high level of abstraction, there are only two states in the
telephone, idle and active and two transitions between them. If a user lifts the
receiver the telephone transits from idle to active and if the user replaces the
receiver the system transits from active to idle.

• At a more concrete level of abstraction, however, an active telephone can be
active in different ways. These are displayed in the refinement of state active.
The receiver can play the dial tone and then the user can start dialing. After
that, the telephone either plays the tone for busy or it tells the user that the
phone of the desired partner is ringing and if the partner responds the
connection will be established and the parties can talk to each other.

• The meaning of the composition of a state in this way is that the state 'active'
is in exactly one of its substates.

• A substate inherits the properties of its composite state, variables and
transitions. More precisely, outgoing transitions are inherited. This means that
if the caller replaces the receiver the telephone will become 'idle', irregardless
in which active state the telephone is.

• Note that state composition is the first way how Harel managed to reduce
complexity. To clarify this and to explain the semantics of composition, the
next slide displays a state transition diagram with the same semantics.

32© Wolf gang Emmerich, 1998/99

Busy

Dialling

Connecting

Active

DialTone

RingingTalking

Idle

lift receiver/
get dial tone

caller hangs up
/disconnect

Composite States

■ A composite state is composed of substates.

4-33

• For reasons of simplicity, we have omitted the definitions of start and ending
states in this diagram.

• Note that a number of additional transitions are necessary in the state
transition diagram. These transition lead from each active state to the idle
state. They were subsumed in the state chart under a single transition leading
from the composite state 'active' to the state 'idle'.

• Hence composite states manage to reduce the number of transitions that are
needed to model the behaviour of a class.

• The next slide displays that we are able to hide the complexity of a composite
state completely...

33© Wolf gang Emmerich, 1998/99

Busy

Dialling

Connecting

DialTone

Ringing
Talking

Idle

lift receiver/
get dial tone

caller hangs up/disconnect

caller hangs up
/disconnect

caller hangs up

/disconnect

caller hangs up

/disconnect

caller hangs up
/disconnect

Equivalent STD

4-34

• Besides the notation we have used so far for composite states, there is
another notation where we omit the substates of the composite state
completely. The composite states are indicated just as if they were regular
states and their definition is given in a separate diagram.

• This diagram needs to identify the substate that becomes active if the
composite is activated. This is done by transition from a pseudo entry state
that is represented as a filled circle and represents the activation of the
composite state.

• We can use a transition to another pseudo state that represents the
deactivation of the composite state and is represented by a bullseye. If we
omit the bullseye, the state transitions defined for the composite state are
inherited by all substates.

• On termination the composite state is shown sending an event to its higher-
level self. In the ‘send event’ notation the ‘target’ is an expression designating
a set of objects, which is not require in this example because it is fixed and
well known.

• The composite states we have just introduced enable us to reduce the number
of transitions needed in a state chart as we can define transitions between
composite states that are then inherited by all its substates. There is,
however, further potential for reducing complexity if we can manage to reduce
the number of states needed. As the next slide shows, concurrent states
achieve that...

34© Wolf gang Emmerich, 1998/99

■ Depiction of substates can be omitted

■ Default starting state begins at a circle
■ Termination appears as a bullseye
■ An event can be generated in another class

using send event notation ^target.sendEvent

DiallingDial tone Connected
dialednumber(num)Dial digit(n)

^dialednumber(number)

Dialling

PartialDial

Dial digit(n)

Composite States

4-35

• The UML documentation suggests the following model of concurrency :

• An atomic object can be thought of as a finite state machine with a queue for
incoming events. New events go on the queue until the object is free to deal
with them. Composite concurrent objects contain several atomic objects as
parts, each of which maintains its own queue and thread of control.

• A detailed view of a telephone diagram illustrates some other features of the
UML notation

35© Wolf gang Emmerich, 1998/99

Taking D50

COMPLETE

Course
Work

Doing
tutorials

Attending
lectures

IN PROGRESS

on time

done

finished

Concurrent Substates

■ When a state has multiple threads of control,
each concurrent substate appears as a
separate region separated by swim lanes

4-36

• A guard condition is a Boolean expression. If the event occurs and the
expression is true, then the transition occurs, otherwise not. As in this
example, two transitions can have the same name if different conditions are
attached.

• The last of Harel’s expansions of the original concept involved concurrency.

36© Wolf gang Emmerich, 1998/99

■ An optional guard [condition] may be
attached to transitions after the event name

Busy

Dialling

Connecting

Active

DialTone

RingingTalking

Idle

lift receiver/
get dial tone

caller hangs up
/disconnect

Conditions on Transitions

dial digit(n)
[incomplete]

dial digit(n)
[valid] /connect

dial
digit(n)

4-37

• ‘do/play dial tone’ denotes an ‘activity’.

• ‘15 secs’ is an ‘elapsed time event’.

37© Wolf gang Emmerich, 1998/99

Dialling

Connecting

Timeout
do/playmessage

Active
phone #

DialTone
do/play dial tone

Invalid
do/play message

Busy
do/play busy

tone

Ringing
do/play ringing

tone

Pinned

Talking

Idle

15 secs

15 secs

dial digit(n)
[incomplete]

dial digit(n)

dial digit(n)
[invalid]

dial digit(n)
[valid]
/connect

connectedbusy

lift receiver/
get dial tone

caller
hangs up

/disconnect
caller

answers
caller
hangs up

State Diagram for Telephone

4-38

38© Wolf gang Emmerich, 1998/99

■ One state diagram for each class
■ Example for Deposit Item Receiver:

Accepting Items

Receiptprinted

putItem ^rcpt.insertItem

^rcpt.printOn

delete

DepositItemReceiverActive

Ostream
Computing

printReceipt

Logo
Printing

ReceiptPrinting

Preparing

Ostream
Printing

^prn.print

^prn.print

Recycling Machine State Diagram

4-39

• An activity is an ongoing operation within a state that takes time to complete.
It can be interrupted by an event that causes a state transition. An event
causing exit forces its termination. An activity is indicated by a pseudo-event
named ‘do’.

• In the case of the elapsed time event the sender is the “environment” rather
than any individual object.

• The ‘history state’ (indicated by an ‘H’ within a circle) provides the means for a
state to “remember” its substate when exited and to be able to resume the
same substate on reentry into the state.

39© Wolf gang Emmerich, 1998/99

■ Activity: an ongoing operation within a state
■ Elapsed time event: an event occuring
■ a given time after entry into state
■ History state: a state resumed upon reentry

A

A2

A1 C

do/activity C

H

X secs

Y
secs

Advanced Concepts

4-40

• During the block design stage of OOSE Jacobson recommends the
examination of the states and state transitions of classes as a means of
increasing understanding without going down to the actual code level.

• Changes of state are important in those objects whose response to stimuli
depend not only on the stimuli but also upon their state on receipt. Such
objects are called ‘state controlled’ and are more likely to have been modelled
as the ‘control objects’. On the other hand the ‘stimulus-controlled objects’ will
perform the same operation independent of state when a particular stimulus is
received, e.g. the entity object ‘Deposit Item’.

• Jacobson does not consider the actual technique used as critical, so long as it
meets the objective of helping the abstraction of code.

• This implementation objective affects the characteristics to be described, the
stimuli received and the reactions that occur on receipt, which in the notation
used in OOSE employ a variety of graphic symbols far richer than those in the
UML equivalent.

40© Wolf gang Emmerich, 1998/99

Role of state transitions in OOSE

■ To increase understanding of design blocks
(classes)

■ To model the ‘state-controlled’ objects, rather
than the ‘stimulus-controlled’

■ To help in the abstraction of the actual code
■ To describe stimuli received and what

happens consequently

4-41

• The set of sequence diagrams provides the means to elaborate the class
diagram, particularly in terms of operations that are needed in class interfaces.

• In considering the next steps, we need to consider both the ‘system in use’ (as
represented in use case and already defined in sequence diagrams) and the
‘objects in the system’ and how each will evolve in response to extermal
stimuli. While the class diagram and the sequence diagrams provided an
external perspective, we now need to focus on the internal aspects of a class
and we need to specify the effect of stimuli on attribute values of the class.

• State diagrams (the subject of the next lecture) provide the essential means of
describing the dynamic behaviour of a class, via the temporal evolution of an
object in response to interactions with other objects inside or outside the
system.

• For your background reading we would suggest:

• [JCJÖ92]

• [Hare87] D. Harel. Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming 8(3):231-274 1987.

41© Wolf gang Emmerich, 1998/99

Summary

■ Design outputs:
• set of sequence diagrams [diagram x use case]
• elaborated class diagram
• state diagrams for classes that maintain internal

states

■ Next lecture: Study how analysis and design
can be supported by tools - Computer Aided
Software Engineering

4-42

• DESIGN MODEL

• Inputs:

• requirements specifications relating to implementation environment

• analysis model class diagram

• use case descriptions

• 16) Identify characteristics of implementation environment including:
programming language primitives (requiring notation)

• 17) Duplicate analysis model class diagram to create initial design model class
diagram and revise by:

• ‘normalisation’ of class structure to provide implementable interfaces and
coupling

• ‘encapsulation’ at architectural level to provide functionally cohesive
packages

• 18) Formal design of the flow of control by description of all stimuli sent
between objects in: a sequence diagram for each use case

• 19) Definition of interface of each class by extracting all operations for a class
from each sequence diagram

• 20) Definition of state diagrams for each class

• 21) Complete design model class diagram

• Notations introduced:

• sequence diagram

• state diagram

• Outputs:

• sequence diagrams [diagram x use case]

• state transition diagram [diagram x class]

• complete design model class diagram

