
University College London Gower Street London WC1E 6BT
Tel: +44 (0)20 7679 4413 (Direct Dial) Fax: +44 (0)20 7387 1397

www.cs.ucl.ac.uk/staff/W.Emmerich
w.emmerich@cs.ucl.ac.uk

UCL DEPARTMENT OF COMPUTER SCIENCE

Wolfgang Emmerich, Dr rer-nat, CEng, MIEE
Professor of Distributed Computing
Director of Research

 GS04: Tools and Environments

Lab Session 2: Manipulating Java ASTs using Eclipse JDT

The aim of this lab session is to explore how abstract syntax trees are used in modern interactive
development environments and to apply the principles we have discussed about abstract syntax trees in
practice using the Eclipse platform.

To gain experience with the Eclipse API contained in JDT for manipulating Java ASTs we will write an
Eclipse plug-in that calculates the following metrics:

• Number of classes in the package
• Average number of methods per class
• Average number of fields per class
• Average ratio of private and public methods per class
• Maximum depth of the inheritance tree.

Getting started

Download the Eclipse plug-in source for a very rudimentary metrics plug-in from the course web page at
http://www.cs.ucl.ac.uk/staff/w.emmerich/lectures/GS04-0708. Use this source to create a new Eclipse plug-
in project. The plug-in as you have downloaded it already calculates the number of classes in a package.
You now need to extend it to calculate the remaining five metrics.

Creating the User Interface

Create new menu entries in the “Metrics” Menu. You can do this by extending the plugin.xml file that
describes the plugin. Create new a new command handler class for each of your new commands. Test your
user interface before you move on to the next task.

Extending the Metrics Engine

Now consider the API in package eclipse.org.jdt.core that you can use for accessing ASTs. It’s Java API
documentation is available from http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.jdt.doc.isv

Now extend the class MetricsCalculator to create the remaining metrics. Write one method per metric
required above. Then call the metrics calculations from your command handlers.

Testing

For this lab session, we will need a number of abstract syntax trees as test data. To obtain them, create an
Eclipse project called gz04CW using the test data that is available on the course web page at
http://www.cs.ucl.ac.uk/staff/w.emmerich/lectures/GS04-0708

