
A
ns

w
er

s
N

O
T 

TO
 B

E 
PR

IN
TE

D

Tools and Environments - Mock Exam Paper, COMPGS04 & COMP4024, 2007/08

Answer Question 1 and two further questions.

Marks for each part of each question are indicated in square brackets

Calculators are NOT permitted

1. Parse Trees

Universal Polish Notation (UPN) supports the definition of arithmetic expressions with-

out the need of indicating precedence with brackets. Instead operator precedence is estab-

lished by giving the operator at the end of an expression, for example the UPN expression

6 3 + 5 - 2 * is equivalent to ((6 + 3) - 5) * 2 in infix notation.

a. Define a grammar for arithemtic integer UPN expressions using the Extended Backus

Naur Form.

calculation ::= expression .
expression ::= number

| expression expression "*"
| expression expression "/"
| expression expression "+"
| expression expression "-" .

number ::= [1-9][0-9]* .

[11 marks]

For your grammar, give the parse tree for the UPN expression given in the introduc-

tion of this question.

[8 marks]

COMPGS04 & COMP4024 1 TURN OVER



A
ns

w
er

s
N

O
T 

TO
 B

E 
PR

IN
TE

D

b. Describe the difference betwen parse trees and abstract syntax trees.
Abstract syntax trees omit any concrete nodes that correspond to terminal symbols of the
grammar. For those terminal symbols that matter, they use attributes to store the lexical
value. As a result they are a lot more compact and easier to traverse and manipulate.

[6 marks]

c. Transform the above parse tree into an abstract syntax tree.

[9 marks]

[Total 34 marks]

COMPGS04 & COMP4024 2 CONTINUED



A
ns

w
er

s
N

O
T 

TO
 B

E 
PR

IN
TE

D

2. Attribute Grammars

Consider the following grammar in Extended Backus Naur Form.

expr :== expr ? expr : expr

| expr + expr

| expr - expr

| expr == expr

| lit .

lit :== ’true’

| ’false’

| [1-9][0-9]+ .

a. Which attributes would you use in an attribute grammar to be able to check type

compatibility in all expressions?
Both expressions and literals need an attribute to store the type

[4 marks]

b. Extend the above EBNF with semantic rules and conditions into an ordered attribute

grammar that checks type compatibility of expressions.

expr :== expr ? expr : expr {
expr.type = expr[2].type;
Cond: expr[1].type==’boolean’;
Cond: expr[2].type==expr[3].type; }

| expr + expr {
expr.type = expr[1].type;
Cond: expr[1].type==expr[2].type;}

| expr - expr {
expr.type = expr[1].type;
Cond: expr[1].type==expr[2].type; }

| expr == expr
expr.type = ’boolean’;
Cond: expr[1].type==expr[2].type; }

| lit {
expr.type=lit.type; }.

lit :== ’true’ {
lit.type=’boolean’;}

| ’false’ {
lit.type=’boolean’;}

| [1-9][0-9]+ {
lit.type=’integer’;} .

[18 marks]

COMPGS04 & COMP4024 3 TURN OVER



A
ns

w
er

s
N

O
T 

TO
 B

E 
PR

IN
TE

D

c. Determine the attribue evaluation order for the visitor that will implement this or-

dered attribute grammar.
The visitor will need to traverse the abstract syntax tree bottom-up and right to left.

[11 marks]

[Total 33 marks]

COMPGS04 & COMP4024 4 CONTINUED



A
ns

w
er

s
N

O
T 

TO
 B

E 
PR

IN
TE

D

3. The Eclipse Component Model

a. In no more than 200 words explain the purpose of OSGi bundles and how they use

advance the Java class loading mechanism for use in Eclipse.
Bundle mechanism that implements dynamic deployment and undeployment of compo-
nents. Adds modularization to Java class loading. Classes may be private to a bundle
meaning that the same class may exist in different versions in different bundles). Life cycle
adds ability to dynamically deploy, start, stop and un-deploy bundles. Service registry adds
the ability to advertise and discover services that are shared across a number of bundles.
Bundles are independent pieces of code and data. They might provide services to other
bundles and rely on yet further bundles to work. The bundling mechanism will refuse to
load a bundle unless all dependencies declared by the bundle are satisfied. None of this is
available for plain class loading in Java.

[11 marks]

b. Assume you decide to build a plug-in for Eclipse that builds on the AST primitives

of org.eclipse.jdt.core and that uses the parser in org.eclipse.resources.core. Your

plugin will also offer commands through user interface menus. You want your plug-

in only to be loaded once when it is first used. Write a manifest file that enables the

Eclipse OSGi implementation in Equinox to deploy your plug-in.
Something along the lines of:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: MyExam Plug-in
Bundle-SymbolicName: uk.ac.ucl.cs.sse.ExamPlugin; singleton:=true
Bundle-Version: 1.0.0
Bundle-Activator: examPlugIn.Activator
Require-Bundle:
org.eclipse.ui,
org.eclipse.core.runtime,
org.eclipse.core.resources,
org.eclipse.jdt.core

Eclipse-LazyStart: true

[12 marks]

COMPGS04 & COMP4024 5 TURN OVER



A
ns

w
er

s
N

O
T 

TO
 B

E 
PR

IN
TE

D

c. The Eclipse extension mechanism allows you to declare how your plugin uses the

extension points provided by other Eclipse plug-ins. To do this it relies extensively

on XML schemas. Describe how XML schemas are used in the implementation of

the plug-in extension mechanism.
Plug-ins that offer extension mechanisms define an XML schema that determines the lan-
guage that is used in the plugin.xml file to describe how other plug-ins make use of the
extension mechanisms offered.

[10 marks]

[Total 33 marks]

COMPGS04 & COMP4024 6 CONTINUED



A
ns

w
er

s
N

O
T 

TO
 B

E 
PR

IN
TE

D

4. Build Management

a. Modern IDEs have a build management component that ensures that an executable

version of the code is available at any time. Give reasons when the internal build

management is insufficient and when it will become necessary to build projects

outside the IDE.
Reasons include triggering build during continuous integration of components checked in by
different team members, overall code-base is split into different IDE projects that are worked
upon by different team members (for reasons of size) and building the overall project would
take too long, regression testing, generating API documentation, etc.

[10 marks]

b. Explain how ant assists in build management.
Provides a configuration language for defining the following:

• properties (e.g. directory names)
• paths (e.g. class paths)
• targets with dependencies
• tasks that are carried out for each target.

Ant then interprets this configuration language and while doing so builds the desired tar-
get(s).

[8 marks]

c. Write an ant configuration file for handling the dependencies between FIT accep-

tance test cases defined in Excel and HTML reports that summarize the test results.

<target depends="build" name="ExecuteTest">
<path id="Fit.classpath">

<pathelement> ... </pathelement>
...

</path>
<java classname="fitlibrary.runner.FolderRunner"

fork="yes">
<classpath refid="Fit.classpath"/>
<arg line="tests testResults"/>

</java>
</target>

[9 marks]

COMPGS04 & COMP4024 7 TURN OVER



A
ns

w
er

s
N

O
T 

TO
 B

E 
PR

IN
TE

D

d. Assume you want to use ant to control the execution of performance tests with a

commercial performance testing tool (such as WinRunner). The ant configuration

language does not have any primitives for invoking and controlling this tool. De-

scribe how you can extend the ant configuration language to start tasks that are

performed by your performance testing tool.
Define Java classes for each of the new primitives you want to use in the performance
testing tasks. And package them into a jar archive, which is on the class path used when
running ant. When parsing the build configuration file, ant will use Java reflection to dynam-
ically load the class and execute the primitives.

[6 marks]

[Total 33 marks]

END OF PAPER

COMPGS04 & COMP4024 8


