IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 12, DECEMBER 1986

1117

Gandalf: Software Development Environments

A. NICO HABERMANN anxp DAVID NOTKIN, MEMBER, IEEE

Abstract—Software development environments help programmers
perform tasks related to the software development process. Different
programming projects require different environments. However, hand-
crafting a separate environment for each project is not economically
feasible. Gandalf solves this problem by permitting environment de-
signers to generate families of software development environments
semiautomatically without excessive cost.

Environments generated using Gandalf address both programming
environments, which help ease the programming process, and system
development environments, which reduce the degree to which a sofi-
ware project is dependent on the good will of its members. Gandalf

environments integrate programming and system development, per- -

mitting interactions not available in traditional environments.

The paper covers several topics including the basic characteristics
of Gandalf environments, our method for gemerating these environ-
ments, the structure and function of several existing Gandalf environ-
ments, and ongoing and planned research of the project.

Index Terms—Environment generation, incremental program con-
struction, programming environments, project management, software
development environments, structure-oriented editing, syntax-di-
rected editing, system development environments, system version con-
trol.

I. INTRODUCTION

VEN simple programming is a challenging process.

When compounded by the difficulties of scale, the
process becomes so complex as to rely heavily on the good
will of programmers. The basic goal of a software devel-
opment environment is to provide software support that
helps simplify the software development process. Current
research in software development environments is taking
place in at least two areas. The first area is concerned with
developing programming environments that ease the pro-
gramming process itself. The second area focuses on con-
struction of system development environments that reduce
the degree to which a software project is dependent on the
good will of its members. The Gandalf project [44] is un-
usual in its interest in producing, through semiautomatic
generation, software development environments that in-
tegrate the notions of both programming and system de-
velopment environments. In this paper we describe both
the characteristics of Gandalf software development en-
vironments and also the mechanisms used to generate such
environments. We further describe three actual environ-

Manuscript received August 31, 1982; revised January 31, 1986. This
work was supported in part by the Software Engineering Division of CEN-
TACS/CORADCOM, Fort Monmouth, NJ.

A. N. Habermann is with the Department of Computer Science, Car-
negie-Mellon University, Pittsburgh, PA 15213.

"D. Notkin is with the Department of Computer Science, University of
Washington, Seattle, WA 98195.
IEEE Log Number 8610712.

ments, constructed using these mechanisms, that manifest
these characteristics. We conclude with a description of
ongoing and planned research by the members of the Gan-
dalf project.

A. Characteristics of Gandalf Environments

Software development environments support many tasks
related to the software development process. Users of
these environments are provided with program editors,
debuggers, version control systems, and documentation
support tools, just to name a few. The ways in which the
user communicates with the environment and the ways in
which the tasks within the environment interact charac-
terize Gandalf software development environments.

elntegration: A common development database acts as
a conduit for sharing knowledge among tasks in a Gandalf
software development environment. Integration through
sharing permits tasks to interact in ways not possible in
nonintegrated environments, which are structured as in-
dependently created tools. For example, consider a tra-
ditional environment that uses the SCCS source code con-
trol system [55] in the context of Ada® [65]. If a pro-
grammer simply changes a comment in the visible part of
an Ada package, the entire package, as well as all depen-
dent packages, must be recompiled because SCCS has no
understanding of the contents of the files that represent
the packages. In an integrated Gandalf software devel-
opment environment, the knowledge that only a comment
has been changed is accessible to the compiler and the
version control system, allowing such unnecessary re-
compilation to be avoided.

®Uniformity: The wide range of tasks supported by
software development environments increases the need for
uniform interaction with the users. Uniformity and con-
sistency of the interface reduces the costly overhead com-
mon in introducing new tasks and’in educating new users.
Gandalf environments support uniform interaction by pro-
viding commands that are broadly applicable as well as
consistent mechanisms for command application. Integra-
tion provides additional uniformity because the separate
tasks are viewed as a single environment.

e Interactive User Interface: Gandalf environments and
their users communicate through interactive user inter-
faces. Small-grained interaction provides benefits at var-
ious levels of an environment. For example, interaction
during program editing can support creation and inference

®Ada is a registered trademark of the U.S. Department of Defense (Ada
Joint Program Office).

0098-5589/86/1200-1117$01.00 © 1986 IEEE

of type declarations for used but undeclared variables. As
another example, if a user makes a change that would re-
quire recompilation of the entire system, a warning to this
effect can be given before the change is actually imple-
mented. If the change is unintended or can be avoided by
an alternative approach, the user can avoid massive re-
computation. Interactions of this style are not easily pro-
vided in noninteractive systems.

*Well-Defined System State: Information describing the
state of the software system under development is incor-
porated into a Gandalf software development environ-
ment. This state information permits direct enforcement
of rules that help users manage the complex system de-
velopment process. Proper definition of the environ-
ment’s commands allows a well-defined state to be re-
tained; the commands and the state can be viewed as
forming an abstract data type. Many management-ori-
ented approaches to software development [3], [4] use
specialized personnel and approaches to ensure that a well-
defined state is retained. In Gandalf software develop-
ment environments, this function is embedded in the en-
vironments themselves.

In addition to these general characteristics, Gandalf
programming and system development environments each
have some specific characteristics. Gandalf programming
environments are language-oriented editing systems that
support source-level debugging and either interpretation
or incremental compilation (with associated incremental
linking and loading). Gandalf system development envi-
roments are characterized by:

sSystem version control support that aids in describing
and manipulating the interfaces, composition, and depen-
dencies of modules, subsystems, and systems. Such sup-
port is related to the notion of programming-in-the-large
[10].

®Project management support that helps control the de-
velopment process so that programmers make changes in
an orderly fashion. Since this is essential to the coopera-
tion, communication, and coordination of programmers in
a project, we have christened this programming-in-the-
many.

These are general characteristics that may be realized
in many ways. The details of several different Gandalf
environments that represent such realizations are de-
scribed in Section III.

B. Gandalf’s Project Orientation

In constructing Gandalf software development environ-
ments with the given characteristics, an environment de-
signer must decide whether rules and conventions apply
uniformly to all users or whether they may be tuned to
satisfy the individual. The Gandalf project has taken a
position between these extremes: Gandalf promotes the
creation of project-oriented software development envi-
ronments in which many traits, such as protection poli-
cies, are tuned to groups of persons working on a project
rather than to the entire computing community or to par-
ticular individuals. Tuning to the community requires pre-

AAUESEY R ANLRIVAIL M A ANSEVA WAY L2 a2

TUOANL LAVULITLIGANLITG, YWl JTI4, LYWL 4, LALNCIOIVADLGAN 170U

science that is, at best, beyond our abilities. Tuning each
trait to each individual user is sometimes undesirable. In
most projects, for example, the choice of programming
language is made by management rather than individual
programmers. Other traits only make sense when consid-
ered in a context greater than that of an individual. For
instance, a protection policy for access to shared infor-
mation must be common for all members of a project.
Hand-crafting a software development environment for
each project is economically infeasible. Gandalf solves
this problem by generating sets of related environments.
Each environment shares the characteristics and objec-

- tives described above, and may be constructed without

excessive cost. Gandalf uses the Gandalf System~the de-
signers’ environment—to facilitate semiautomatic gener-
ation of a set of related environments [16].

C. Related Work

Related work on software development environments
falls into two categories: projects that consider program-
ming environments and projects that consider system de-
velopment environments.

Many programming environments are language-ori-
ented systems: some have been generated while others
have been constructed by hand. Gandalf’s previously de-
scribed IPE [39], [18] is a system, generated from Me-
dina-Mora’s ALOE [41], [40], that integrates a syntax-
directed editor with an incremental compiler and linker to
produce a uniform environment for GC.! The Cornell
Program Synthesizer [62], [63] is a handcrafted environ-
ment for PL/CS, a teaching subset of PL/1, that supports
execution through interpretation. Interlisp [61], Smalltalk
[26], [27], Mesa/XDE [58], and Cedar [59], [60] are all
single-language programming environments developed at
Xerox, each of which supports powerful debugging and
error correction tools in the context of a powerful personal
workstation with a high-resolution bit-map display and a
mouse.

Other interesting language-oriented systems and gener-
ators include: the Synthesizer Generator [49], [54], which
uses optimal incremental attribute grammar evaluation for
checking of static semantics in a syntax-directed editor
[91. [51]-[53]; Mentor [13]-[15], which uses a descrip-
tive language called Metal [31] to construct a multilingual
editing environment; PDE [1], [42], an editing and exe-
cution environment based on incremental parsing tech-
niques; Syned [24], [30], a totally hybrid system that sup-
ports editing of text or structure at any point; Pecan [47],
[48], a graphics-oriented system that provides a wide var-
iety of user views of a program under development; Mag-
pie [11], a Pascal programming environment based on in-
cremental compilation; Cope [2], [8], which provides
powerful recovery techniques in the context of a lan-
guage-oriented editor; Poe [21], which relies on syntactic
error repair to retain correctness of programs entered as

!GC, or Gandalf C, is a slightly modified version of C [35] that supports
type checking of parameters.

HABERMANN AND NOTKIN: GANDALF: SOFTWARE DEVELOPMENT ENVIRONMENTS

text; R" [29], an environment for Fortran; DICE, a dis-
tributed incremental programming environment [22], [23];
and DOSE, a graphics-oriented structure editing environ-
ment generator produced at Siemens [19], [34].

System development environments vary greatly.
UNIX™ [36] and the Programmers’ Work Bench, or PWB/
UNIX [12] are typical examples of the tool-kit approach
to environments, where development tools are added to
an existing environment with little regard to the common-
ality among the tools; further, communication among

tools is entirely based on conventions. Toolpack/IST [45] .

focuses on integrated environments that support mathe-
matical software development through the use of.a central
database. Cades [56] is an environment that attempts to
mechanize an entire project organization. The Stoneman
[5] requirements for an Ada programming environment,
describes, in varying degree of detail, how such an en-
vironment should address nonprogramming issues such as
configuration management. Arcturus is a prototype of an
advanced Ada programming environment [57]. The
SAGA Project focuses on producing environments that
manage all phases of the software life-cycle for small to
medium-sized development projects [6], [37]. The IPSEN
project is concerned with software development environ-
ments based on underlying graph technololgy as opposed
to the more common tree model [17]. Some of the pro-
gramming environments address some of the system de-
velopment environment issues as well; for example, Xe-
rox’s Cedar supports users in the system modeling process
[38].

Many of these programming and system development
environments share some of Gandalf’s goals and charac-
teristics. Gandalf differs from these systems by focusing
on both areas—easing of the programming process and
reducing the dependence on good will—as well as its
strong emphasis on the generation process.

II. THE GENERATION ENVIRONMENT

The need for semiautomatically generating software de-
velopment environments arises because each project re-
quires a different, although related, environment that must
be constructed in a cost-efficient manner. The Gandalf
System facilitates this process through the use of the
ALOE structure-oriented editor generator [40], [41].

A. User View of ALOE Editors

The commands of ALOE editors generated by this pro-
cess are based on software development constructs (such
as programming language statements, access control lists,
and module descriptors) rather than on lines and charac-
ters. Each ALOE editor provides two kinds of commands
to manipulate the database trees: language-dependent
constructive commands and language-independent editing
commands.

Each ALOE editor provides one constructive command
for each construct that can be created. Constructive com-

™UNIX is a trademark of AT&T Bell Laboratories.

1119

mands are best described by an example that shows how
to construct while statements in a procedural program-
ming language: when a user issues the constructive com-
mand ‘‘wh’’ the ALOE editor responds by displaying:

while %bool-exp do
% stat
od

with the cursor on the screen highlighting the syntactic
unit ‘“‘%bool-exp’’. The phrases ‘‘%bool-exp’’ and
““%stat’’ are typed placeholders that are to be expanded.
For example, “%bool-exp’’ could be replaced with a
relational expression or a conjunction of Boolean expres-
sions involving Boolean operators, but not with a variable
declaration. Similarly, the programmer can choose to re-
place ‘‘%stat’’ by an assignment statement, a compound
statement, etc. The user continues expanding placehold-
ers until all leaves of the tree are replaced by terminals
such as variable names or constants. The syntactic cor-
rectness of the tree is ensured by limiting the sets of con-
structs that can replace particular types of placeholders.

All ALOE editors share a collection of language-inde-
pendent editing commands that manipulate the database
trees. Typical commands are ‘‘delete a construct’ and
‘“‘move the cursor.”” On deletion or transformation, syn-
tactic correctness is preserved by replacing the modified
nodes with the appropriate placeholders.

Use of ALOE as the basis for Gandalf environments
directly supports the construction of environments with
interactive and uniform user interfaces. The interactive
nature of ALOE editors is apparent. The uniformity of
ALOE interfaces is achieved in two ways. First, the lan-
guage-independent commands are shared among all
ALOE editors. Second, the way that the language-depen-
dent commands are applied is uniform across all editors,
even though the structures that they represent vary.

B. Constructing Editors

Generation of these editors, which form the basis of
Gandalf software development environments, is done with
the support of the ALOE Generator. This generator takes
as input a description of the language that is to be manip-
ulated and produces as output an editor for that language.
In describing a language, the environment implementor
must give a description of the abstract syntax, the con-
crete syntax, and the names of action routines to be called
as the tree is manipulated. The high-level view of this
process is shown in Fig. 1.

The abstract syntax for a language describes the oper-
ators, which include the terminals and nonterminals, and
the classes, which indicate the set of operators that may
replace particular placeholders. An example of one non-
terminal definition and two class definitions is:

WHILE =
%bool-exp =

%bool-exp %stat

ID | TRUE | FALSE | LSS | LEQ |
EQL | NEQ

%stat = ASSIGN | IF | FOR | WHILE | RE-
TURN

LLZY

Language Tables
{Abstract)

¢ Aloegen

Language Tables Action Routines
(GC) {GC)

i GC Compiler l GC Compiler

Kernel
{object}

Action Routines
{object)

Language Tables
{object)

4

Fig. 1. Constructing an editor in ALOE. Language tables are developed
in an abstract form that represents the abstract and concrete syntax di-
rectly. They are then transformed by ALOEGEN, an ALOE editor that
helps the implementor construct new editors, into GC tables that are
compiled. The action routines are defined in GC and compiled. The ob-
ject code for the tables and the action routines are linked with the object
form of the kernel to produce an editor.

The children of operator ‘‘WHILE’’ are the placehold-
ars ““%bool-exp’ and ‘“%stat’’. These placeholders
represent the two classes with corresponding names that
list the possible operators that can be substituted for these
placeholders.

The concrete syntax describes a suitable screen repre-
sentation of each language operator. The visible represen-
tation on the screen is derived from the syntax tree by the
unparser, an ALOE task that maps the syntax tree rep-
resentation of a program into a textual representation. It
performs this mapping while using the concrete syntax
provided by the environment implementor. An example
of a concrete syntax description, or unparsing scheme, is:

“WHILE = while @1 de @N@2”’

where @1 and @2 designate the children of the WHILE
operator and @N the insertion of a new line in the output.
The design of the concrete syntax is largely up to the ed-
itor implementor. For instance, simply changing the do
to begin above would change the displayed representation
of the while loop, but not the abstract structure.

Another feature permits an editor implementor to define
more than one unparsing scheme per operator. The im-
plementor may then choose to provide one representation
without semicolons, another with semicolons, and yet an-
other with explicit closing delimiters (e.g., ‘‘end loop”’).
A more important application of the multiple unparsing
feature concerns the abstraction of detailed information.
For instance, a procedure consists of a name, a parameter
list, and a procedure body that contains declarations and
statements. At times in the editing process, a user may
wish to work on a particular procedure and look at all its
detail. At other times, this same procedure is condsidered
as part of a collection of objects and the procedure body
in particular is rather irrelevant. Multiple unparsing
schemes enable the implementor to define two concrete
representations for procedures: one that displays the dec-
larations and statements of the body and one that does not.
In this manner a programmer can get a bird’s eye view of
a collection of procedures, abstracting from their imple-

1BEEE T KANDAU TIUND UN DU WAKE ENUINBEKINU, VUL, dE-14, NU, 14, DECLCNIDOCR 1700

mentation details. Unparsing schemes are switched im-
plicitly in response to user commands such as cursor mo-
tion.

Action routines implement the specific run-time behav-
ior that the designer might want to realize in the environ-
ment being created. Action routines can be used for var-
ious purposes including checking of semantics, window
and memory management, and keeping the system being
developed in a well-defined state. Action routines can
check consistency and can enforce system design rules.

The generation process supports construction of Gan-
dalf environments that are integrated. By constructing a
grammar that represents the entire set of constructs asso-
ciated with the software development process, an envi-
ronmental implementor designs a shared database that
supports sharing of knowledge among related tasks of the
environment. Such integration makes it easier for a user
to view an environment in a uniform way.

III. ExisTING GANDALF ENVIRONMENTS

Several major Gandalf environments have been de-
signed and implemented. One of these is a full-fledged
software development environment. The others are
smaller scale programming and system development en-
vironments. In this section, we focus on three of these
environments: the Gandalf Prototype, a complete Gandalf
software development environment; GNOME, a set of
programming environments used in an educational situa-
tion [7], [25]; and SMILE, an internal system develop-
ment environment, which, although it is not a generated
environment, still displays many of the characteristics of
Gandalf environments. All of the environments described
in this section have been implemented fully.

Although we do not have room to discuss them all, a
variety of other smaller scale environments have been
constructed. Most noticeable is ALOEGEN, a Gandalf
environment that supports creation of descriptions from
which other Gandalf environments can be generated. AL-
OEGEN’s existence is an indication of the ability of Gan-
dalf environments to be bootstrapped. Environments for

JAlfa (a functional programming language), Ada [65], and

Modula-2 [66] have also been developed. Environment
for tasks other than software development—such as mail
systems and document formatting systems—have been
constructed as well [43].

To understand the descriptions of the GP and GNOME
environments, it is essential to remember that they are
implemented as ALOE editors. For example, construc-
tion of nodes is always performed by replacing typed
placeholders; this holds true whether the user is creating
an IF statement or an import clause for a module. In sev-
eral cases, additional language-specific commands have
been added to particular environments. These commands
are displayed in boldface throughout the descriptions.

A. The Gandalf Prototype

The Gandalf Prototype (GP) is a full-fledged software
development environment created by members of the

HABERMANN AND NOTKIN: GANDALF: SOFTWARE DEVELOPMENT ENVIRONMENTS

Gandalf group. GP, while a prototype rather than a pro-
duction system, displays all the characteristics of Gandalf
environments described in the introduction. The primary
focus of this description is to present GP’s system version
control, incremental compilation, and project manage-
ment support for GC programs.

The construction of GP is based on development of an
abstract ALOE grammar that represents a set of software
development structures. Since GP supports more than just
programming, constructs in the system include modules
and their versions, access control lists, documentation,
etc. Throughout the descriptions of the rest of GP, it is
important to remember that the described structures are
actually pieces of structure, represented by ALOE oper-
ators, which appear in the grammar description for ALOE.
Action routines, along with several editing commands
added specifically for GP, implement the required seman-
tic checking and execution support.

System Version Control: The system version control
support in GP supports two objectives—description of
systems and automatic generation of system versions.
Further details on system version control in GP are avail-
able elsewhere [28], [33].

GP’s description of a software system has a static and
a dynamic component. The static component is the de-
scription of modular interfaces, specifying how the facil-
ities—such as data objects, type definitions, and proce-
dures—can be used in other modules. The dynamic
component is the description of the composition of a sub-
system out of particular versions of modules.

A system description is based on several notions, each
of which is defined as a piece of the abstract syntax of
GP. Boxes, similar to directories in traditional file sys-
tems, contain a collection of other boxes and modules.
Modules provide both an interface, consisting of a set of
facility specifications, and also a set of versions that re-
alize this interface in different ways. Each version con-
sists of a set of revisions that in turn represent an actual
implementation of a module. The tree structure of boxes
and modules, along with the two-dimensional structure of
versions and revisions within modules is shown in Fig. 2.

GP’s system version control eases changes that are fre-
quently made by programmers. Commonly performed ac-
tions by system programmers include modification of ex-
isting programs, creation of alternative realizations, and
modifications of existing interfaces. Minor modifications
of existing programs are achieved by developing new re-
visions for a version. Whenever a modification is made,
by application of the revise command, an element is added
to the list of revisions, ordered by revision date. Creation
of alternative implementations is supported by creation of
a new version for a module. Each version of a module
must realize exactly the same interface. Given this restric-
tion, versions of a module may be arbitrarily substituted
and should only affect performance of the system. An-
other implication of this restriction is that to modify the
interface of a module, a new module must be created.
This module can be based on an existing module through
use of the diverge command, which creates a new module

1121

é)l%ﬁl'l
S D %Lﬁj

Time (revisions)

v

Realizatioen‘; . .

(versions)

[]
v [T

(b)

Fig. 2. Version control structures for GP. (a) Boxes, which are repre-
sented by rectangles, impose a tree structure on GP’s system descrip-
tions. Modules, which are represented by ovals, represent definitions of
program modules. (b) Each of the modules [the circles in part (a)] can
be realized by multiple versions. Each version can by successively up-
dated, over time, to produce a set of revisions.

node within a selected box, renames the module, and cop-
ies a selected version and revision into the new module.

GP further eases extension and modification of inter-
faces by permitting realizations of modules to use facili-
ties defined in other modules. This is accomplished by
distinguishing between implementations, which represent
actual code, and compositions, which represent repack-
aging of existing modules.

An implementation is essentially a source program that
defines bodies for all the facility specifications in the
module interface. An implementation description consists
of a name for the implementation along with a with list
that lists imported module names. In addition to support-
ing abstraction, permitting importation of interfaces, eases
augmentation of existing modules. For example, suppose
we have a module M that exports the list of facilities (f,
g) and suppose we need the extended list of facilities (f,
g, h). This is accomplished by defining a new module P
with an implementation P1 that consists of a program for
facility h, while its with list contains module M (note that
the with list is associated with the implementation instead
of the module since there can be multiple implementations
of a single module): '

module P provides f, g, h;
impl P1 with M;
end P

Implementation P1 is a valid representation of module P
because the combination of P1°’s program and module M
provides all the facilities exported by module P.

A composition is described by the list of modules or
module versions from which it is composed. For exam-
ple, suppose a module M provides the set of facilities (f,
g) and a module N provides the set (h, k). The compo-

sition
comp C = (M, N)

would be a legitimate version of a module that exports the
set of facilities (f, g, h, k). GP ensures that the compo-
sition provides at least the resources listed in its module’s
srovides list.

As the user applies ALOE commands to modify mod-
iles, implementations, compositions, and revisions, GP
ncrementally checks that the well-defined state of the en-
sironment is retained. Note that an environment may be
n a well-defined but still semantically incorrect state. For
:xample, if a module has no implementation to match a
‘acility specification in an interface, it is correct. How-
sver, if the environment knows this is incorrect and does
10t permit other modules that are dependent on the incor-
‘ect module to be built until the facility is implemented,
he state is well-defined.

The second objective of system version control is the
wtomatic generation of executable system versions. In
raditional programming environments programmers must
‘emember, either on paper or in system command files,
he various loading sequences needed to accomplish the
sorrect grouping of module versions. Fine tuning such
rrocedures while including, for instance, the option of
skipping a recompilation when a satisfactory object code
rersion exists, is difficult. Instead of placing this burden
n the programmers, the GP version control facilities au-
omatically derive, from the system description, the min-
mal steps needed for system generation. The make fa-
slity [20] of UNIX supports a similar process but requires
he implementor to construct a separate description of the
lependencies among the files, not the logical modules,
hat represent the system.

Subsystems are generated by applying the instantiate
>ommand to a module, a version, or a revision. For in-
itantiate to work in the case that only a module is given
nstead of a particular version of that module, each mod-
1le designates one of its versions as its standard version.
A user may change this designation, but there will always
ye exactly one. Every time an unqualified module name
s encountered during the system generation process, the
standard version of that module will be chosen. Similarly,
rach implementation must have a standard revision.

The policy of selecting the standard versions and revi-
iions gives systems generation a dynamic character. The
esult of instantiate is time-dependent because the stan-
lard versions and revisions may change between succes-
iive calls. Because of this, descriptions of instantiated
iystems must store the complete descriptions of all revi-
iions ultimately involved in building the system. Since
he standard pieces can change, it is essential to store the
ictual paths to the pieces assuming that someone may later
vish to rebuild the identical system. If versions or revi-
iions other than the standard ones are desired by a project
nember, they can be designated in with lists and com-
yositions.

LIV 1AWV WAY OVIL 3 TTANNLY LINGUIAINDORLING,

YUL. O0-14, NU., 14, UDLDNVMIDEK 1Y00

Incremental Program Construction: Incremental pro-
gram construction in GP is based on three improvements
in the construction cycle of {text edit, compile, load, ex-
ecute}. First, the use of an ALOE editor reduces the time
and effort it takes to get a program to compile. Second,
incremental loading and linking is provided. Third,
source-level debugging support is supplied.

Many of the advantages of using an ALOE editor for a
programming environment address drawbacks of the stan-
dard text editing, parsing piece of the cycle. The basic
problem with text editors is that they are so general that
they do not understand the objects they manipulate. If one
enters the letters ‘‘b’’, “‘e’’, “'g’’, “i’’, 'n’’ on a key-
board, the text editor does not understand that this rep-
resents a keyword and understands even less that this word
should be matched by an occurrence of a closing key-
word. It is peculiar that we enter programs as text while
we think of them as having a definite syntactic, to say
nothing of semantic, structure. It is even more odd that
the very next thing we do is to submit the character string
to a syntax analyzer to see if we really entered a legitimate
program, which was what we intended to do in the first
place. An ALOE editor, on the other hand, helps a user
enter programs in terms of the syntactic structures of the
language. Hence, it is impossible for a user to produce
programs that are syntactically incorrect. This saves sub-
stantially in the time it takes to get a program to compile
correctly; one no longer needs those few compiles “‘just
to get the semicolons right.”’ (Some modern text-based
editors have been extended to help users maintain syntac-
tic correctness of edited programs. However, the other
benefits of syntax-directed editors, such as uniformity and
cost-effective generation, are not generally available
through text editors.)

Modern language systems often provide facilities for
separate compilation and some allow incremental compi-
lation. But in most systems it is necessary to repeat the
linking process and generate a new executable version of
a subsystem if one of the modules is modified. Larger
systems take a long time at the link and load phases, which
decreases the productivity of programmers. A substantial
shortcut is achieved by restricting the linking and loading
(as well as the compilation) process to the procedures that
are modified. This shortcut can be taken if modifications
involve the code of a procedure, but not its specifications
of parameters or results. In the latter case, procedures that
call the modified procedure must also be recompiled and
relinked because the calling sequence is no longer valid.
Whether or not a modified executable version can be re-
started depends on the effect a procedure or function call
has on global data. Restarting at an earlier point, for in-
stance at the beginning of a procedure execution, is pos-
sible if there are ways to save the global state at procedure
or function entry. In other cases, particularly if proce-
dures have side effects such as reading from input, the
execution is irreversible and cannot be resumed at an ear-
lier point.

GP avoids relinking of the entire system by using in-

HABERMANN AND NOTKIN: GANDALF: SOFTWARE DEVELOPMENT ENVIRONMENTS

Load
Image
Proc A
potry B/Object
L o ec
call B Vector 3
»| A/Address —4| A/0bject
Call Cl— J
B/Address ,
N - C/Object
Proc B > | I
C/Address
P
call C }
| — — | B*/0Object
Proc C
Call B
Call A

Fig. 3. Incremental linking and loading in GP. The left column represents
procedure calls in source programs. At run-time, when a call is made,
the address for the called procedure is determined indirectly through the
entry vector. For instance, when proc A calls proc B, the object code
at the top of the load image is executed. If a modification is later made
to the source for proc B, its object code—represented by B* Object in
the figure—is loaded at the end of the address space and the entry vector
is updated to refer to the new code (the darkened dashed line represents
the updated indirect reference for calls on proc B). All new calls to proc
B will execute the B* code.

variant addresses for procedures within modules. Each
module has an entry vector that contains one entry for
each procedure that this module provides to other mod-
ules. Outside of a module these procedures are known by
a fixed position in the entry vector. This permits reloca-
tion of procedures without affecting the references to them
from other modules. The content of an entry-vector com-
ponent is the absolute address of a procedure. Hence, the
price for invariant linking is one indirect memory refer-
ence at every procedure call. Informal measurements in-
dicate that this cost is acceptable. This approach is dis-
played in Fig. 3.

Source-level debugging is partially supported by ex-
tending the list of statements in GC with TRACE and
PAUSE. When the run-time system encounters instances
of these statements, state is saved and control is passed
back to the user. Commands for starting from an initial
state and restarting from a saved state are available to the
users. Support for monitoring the value of objects in the
user program is also supported through a special monitor
window on the screen that contains a list of name and
value pairs. To monitor a new object, the user simply en-
ters the monitor window, extends the list of pairs, and
places the name of the object in the name field. From then
on, the value of the object will appear next to its name.
In addition, the value of the object may be changed during
a break in the execution simply by entering the monitor
window and modifying the value directly. In all cases,
any recompilation needed to support the monitoring is
done automatically.

Project Management: The function of project manage-
ment in GP is to guarantee the integrity of development

1123

status information and to provide access to this informa-
tion. To this end, the system descriptions are augmented
with some explicit status information, while manipulation
of this data is controlled by the action routines of the.
ALOE interface. Protection against chaotic modifications
of the state of a project is obtained by treating system
descriptions as collections of typed objects. The abstract
grammar for GP restricts modifications that are structur-
ally unsound, but project management supports additional

restrictions.

Project management primarily involves the top-level
description of a system expressed in terms of boxes, mod-
ules, and versions. The system description is extended
with some objects that specifically serve the purpose of
project management. The most important objects of this
kind are access lists, of which there is one attached to
each box, and revision histories, of which there is one
linked to each box, one to each module, and one to each
module version. The access list of a box describes the
rights of the programmers that may manipulate the box.
Users are classified by the specific rights they have. The
most privileged user is the superuser of a box who has the
right to modify boxes and modules, and also has the right
to delete information and to change the access list. The
next class is that of the project programmers who have the
right to modify boxes and modules, but who cannot
change the access list and who can only mark information
as obsolete. Every user who is included in the access list
has the right to read information and to execute programs.
A revision history is a collection of messages, ordered by
date, briefly describing the revisions that were made. Each
message is dated and marked with the name of the pro-
grammer who caused the message to be created. The pro-
grammer is responsible for writing the text of the mes-
sage.

When a group of programmers works on a joint project,
there is a chance that several programmers simultaneously
try to modify some system module. GP project manage-
ment ensures that such potentially disastrous situations do
not arise. Commands are provided to supply the hand-
shaking necessary to avoid such conflicts. The most im-
portant such operations are reserve, release, and deposit,
which are similar to commands found in source code con-
trol systems like SCCS [55] and RCS [64]. If a program-
mer intends to modify a module, he calls the reserve com-
mand with cursor located at the module. If it is already
reserved, an error message will be displayed by ALOE to
the programmer. Otherwise, the module is reserved in his
name and then copied, in modifiable mode, into the pro-
grammer’s private database. On completion of his modi-
fications, the programmer may make the changes perma-
nent, by calling deposit to place the modified module back
into the public database. If, during the modification pro-
cess, the programmer realizes that he does not wish to
make the changes permanent, he may release the module,
which simply deletes the programmer’s reservation and
leaves the status as it was just before the reservation was
made.

124 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING., VOL. SE-12, NO. 12, DECEMBER 1986

The deposit action is strictly controlled by GP. The de-
yosit command begins by checking that its caller has the
ights of a programmer or superuser. Then it checks
vhether its caller holds the reservation. If these condi-
ions are satisfied, the deposit action prompts the user for
| brief description of the modification. The text typed by
he user is extended with a heading and stored as a mes-
;age in the appropriate history list. Next, the list of revi-
iion descriptors is updated, and finally the revised pro-
yram is included as a new source object.

The status of a developing system is accessible to GP
1sers by direct access to the database through ALOE.
reation of information—such as boxes or access control
ist entries—is done either explicitly through invocation of
ommands such as revise and instantiate, or implicitly
)y construction of nodes through the standard ALOE
nechanism.

3. The GNOME Project

The GNOME project [7], [25] consists of a family of
ALOE editors used as the sole programming environ-
nents in the introductory programming courses at Car-
iegie-Mellon University. The environments have been
1ised for several years by over 700 students a semester.
¥hile not supporting version control and project manage-
nent, as GP does, GNOME is interesting in its imple-
nentation of the other characteristics.

The first substantial editor introduced to the students is
or Karel [46], a turtle-graphics language designed for in-
itructional purposes. To the student, the Karel editor is a
:ompletely self-contained system. Syntactically correct
yrograms are developed, semantically checked, and exe-
:uted entirely within the context of the editor. Internally,
he syntax and semantic checking are performed under the
juidance of ALOE, but the execution is performed by the
Carel interpreter: after the program is checked by the
ALLOE version, a text version is created and sent to the
arel parser and interpreter. This separation is hidden
rom the students by ensuring that static semantics are
:hecked, and any errors are reported, before execution of
he program begins.

The definition of the abstract syntax of Karel was ini-
ially based on the concrete syntax required by the Karel
?arser. Over time the grammar has been improved to ease
he user interface since in GNOME, with its army of nov-
ce users, this is of prime importance. One representative
nodification is the addition of comment nodes to the
rrammar.

Many static semantic errors are checked by the imple-
nentors of Karel. These can be broken into two groups—
ncremental checks to be detected as they occur and ter-
ninal checks to be detected on program completion. The
ncremental checks are use of an undefined procedure,
nultiple definitions of a procedure, self-recursion, mutual
ecursion, and deletion of a procedure still in use. The
erminal checks are procedures out of order, unfilled-in
10des still remain, no accessible end statement, proce-
lure defined but not used, and deletion of a procedure still
n use. One check—deletion of a procedure still in use—

R

appears in both lists since a user could ignore the warning
returned on the initial deletion.

Many of these checks arise simply because the existing
Karel parser and interpreter are used for execution. The
situation would be different if execution were performed
directly from the abstract syntax tree. The most obvious
example is the check for unfilled-in nodes, which is nec-
essary in the current Karel since the Karel parser does not
understand about such nodes (or, more accurately, the un-
parsed representation of such nodes). During direct inter-
pretation of the tree, these nodes can simply be ignored.
The checks for use of an undefined procedure and deletion
of an instruction still in use can also be dealt with differ-
ently. As direct interpretation permits execution of in-
complete programs, these checks can be delayed until run-
time, when the missing procedure can then be defined. Of
course, this may not be desirable for pedagogical reasons,
but it is technically straightforward and might be a rea-
sonable approach for some classes of users. In addition to
these checks, some semantic errors are interactively cor-
rected. For instance, procedures are reordered, if the user
desires, to meet the criteria of the Karel system.

GNOME also provides a Pascal editor for creating and
modifying stand-alone programs. The initial abstract syn-
tax description used was taken from a standard Pascal
syntax description. A variety of problems with this de-
scription arose, most of which concerned the user inter-
face. During the development of the initial editor, the ab-
stract syntax description changed frequently. Over time,
these changes became less frequent. Two typical changes
were:

* Modifications to support abstraction through the use
of windows. Procedure headers, for example, are dis-
played at the main program level by the name of the pro-
cedure and the parameter list. Cursor motion into the
header causes the procedure to be opened and implemen-
tation to be shown (in a window separate from the main
program level).

® Support for common procedure calls, such as

writeln, were added to the grammar, to ease the students’
task in common situations.
- Although incremental semantic checking is currently
being implemented, the existing GNOME-Pascal editor
leaves checking of static semantics to the compiler, which
is hidden from the students. Any errors that occur during
the compiler’s processing of the text version of the pro-
gram are mapped back into the tree for reporting to the
students.

Type checking in Pascal makes the implementation of
incremental static semantic checking more difficult than
that required in Karel. However, since Pascal provides
only compile-time types, all checking can be done before
execution. Support for a language with run-time types is
possible only if the editor also controls execution of the
program.

C. SMILE

SMILE, a production-quality internal development tool
of the Gandalf project, is an environment that aids in

HABERMANN AND NOTKIN: GANDALF: SOFTWARE DEVELOPMENT ENVIRONMENTS

source code control and project management. Although
SMILE presents a more traditional user interface than GP
or GNOME, it nonetheless represents a contribution in
the area of software development and retention of well-
defined state in a developing software system.

SMILE, through a command-oriented interface, sup-
ports three major activities. The first activity is the defi-
nition and manipulation of module interconnections.
Modules, as a whole, are made visible or are hidden from
other modules in the system. Modules may only import

facilities that are exported from visible modules. A smaller

grain size of interconnection is available through com-
mands that import or export particular facilities—C func-
tions, data types, and objects. The description of the in-
terconnections cannot be manipulated in one piece but
instead evolves as individual SMILE commands are ap-
plied. Commands for viewing the structure are provided
by SMILE. The second activity is control of public and
experimental versions of the project database. At any
time, each programmer on a project may have a set of
modules reserved, in the GP sense. In essence, each pro-
grammer has an experimental database that consists of
modifiable versions of the reserved modules and read-only
versions of the other modules of the system. SMILE’s
third activity. is support for implicit compilation. The
commands used to modify objects designate whether they
are modifying specifications or implementations of facil-
ities. As in GP, the system automatically derives, from
the module interconnection descriptions, what compila-
tions need be applied after a given modification. The user
is given commands to control automatic compilation, if
desired.

SMILE also supports three subenvironments for pro-
gramming-in-the-small—ALOEGEN, ARL, and DBGEN.
The function of ALOEGEN (assisting the implementor in
defining the abstract and concrete syntax of a target en-
vironment) was described in Section II-B. The ARL en-
vironment helps the implementor to describe the run-time
support that will be available in the target environment,
while DBGEN assists in defining the static semantics in
terms of attributes.

ARL is the Action Routine Language in which the im-
plementor can write the necessary run-time support for
the target environment. An Action Routine, or Daemon,
is essentially a procedural record field attached to the op-
erator types described in Section II-B. When the user op-
erates on the database in the target environment, an action
routine is automatically activated when an object to which
it is attached is visited. The invoked action depends on
the particular operations applied, such as CREATE, DE-
LETE, or ENTER. The ARL language in which action
routines are described is a tree manipulation language
specifically designed for the database model of Gandalf
environments.

DBGEN defines the way in which the implementor can
declare attributes and attribute equations that describe the
static semantics of a target environment. It also allows the
implementor to define operations on objects in the tree
structured database that can he added ta the ctandard cat

1125

of user commands. One can think of providing the user
with operations such as swap two objects of a list, put
procedure declarations in alphabetic order, count the
number of occurrences of a name in a subtree, etc. The
usefulness of the target environment in supporting a user
community can be increased considerably by adding a
well-chosen set of extended commands.

SMILE is currently used as the development environ-
ment for ALOE, GP, GNOME, SMILE itself, and several
other projects at CMU and elsewhere.

IV. CURRENT RESEARCH

In building task-oriented programming environments,
the implementor has to deal with syntax, semantics, and
expertise. Abstract syntax determines the structure of ob-
jects that can exist in a target user environment and spec-
ifies the possible connectivity of these objects. Concrete
syntax describes the various representations of these ob-
jects as they will appear as output. Static semantics de-
termines the consistency of a collection of objects accord-
ing to naming and scoping rules. Dynamic semantics is
the run-time support that is needed to record the effect of
a sequence of user actions. Rules of semantics basically
determine when an environment and the collection of ob-
jects in it is in a correct state. A particular purpose of
implementing semantic checks is to report errors that oc-
cur when the environment gets into an ill-defined state. In
contrast to semantics, expertise goes beyond applying
correctness criteria and is able to distinguish a good de-
sign from a bad one. In a program development environ-
ment, for instance, a check for undeclared variables is a
matter of semantics but observing, for example, that a
program is unnecessarily inefficient is a matter of exper-
tise. :

How to deal with syntax is basically a solved problem.
The description tools for abstract and concrete syntax are
effective, particularly in the ALOEGEN environment that
helps designers construct these descriptions interactively.
Some problems remain in making the user interface pleas-
ing and fast. We want, in particular, to extend the feature
of selective representation of environment objects to a fa-
cility that allows the designers to define different views of
an object type. These views are not so much determined
by the various ways in which the user wants to look at
collections of data objects, but more by the way that each
individual tool perceives the database. The environment
is then assembled by a synthesis of the various tool views.
This mechanism will replace the current primitive repre-
sentation of unparsing schemes.

It is fair to say that the technology for dealing with syn-
tax and semantics has been developed in sufficient detail
to be useful. The issue of syntax has been investigated in
several projects during the early 1980’s [13], [19], [24],
[40], [44], [62], while matters of semantics have been
mastered in more recent years [7], [31], [50], [521, [32].

How to deal with expertise in programming environ-
ments is still an open question. A solution may be derived
from the successful work that is going on in Al on this

tnnin Tnotand Af mncrinae attantinm 4a shin canhkloace oo,

1120 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 12, DECEMBER 1986

decided first to make more headway with the description
of semantics and tackle another problem—that of distrib-
uted systems. When designing a nontrivial software sys-
tem, programmers will work on their personal worksta-
tions and share system modules on a network. The
Gandalf system should provide features for a designer to
define safe ways of sharing information and updating parts
of the database. The approach currently being pursued
makes use of the extensive research on atomic transac-
tions in database management.

In all the research conducted in the Gandalf project, the
emphasis is very strongly on the descriptive generic ap-
proach. Modifying descriptions is much easier and more
reliable than modifying programs. At the same time, the
generic approach makes it possible to experiment and
generate revised versions of an environment in a matter
of hours and days instead of the weeks and months it takes
to modify handwritten software systems.

ACKNOWLEDGMENT

The Gandalf project has been possible due to the co-
operation of many people including B. Denny, B. Ellison,
P. Feiler, D. Garlan, G. Kaiser, C. Krueger, R. Medina-
Mora, D. Perry, S. Popovich, and B. Staudt. Members of
the GNOME project, including P. Miller, L. Miller, and
R. Chandhok also deserves thanks. In addition to the
helpful comments of our Gandalf associates and the ref-
erees, the following people graciously made detailed
comments on the paper: E. Borison, M. Donner, H.
Gayle, P. Hayes, S. Minton, L. Rudolph, and M. Shaw.

REFERENCES

[1] C. N. Alberga, A. L. Brown, G. B. Leeman, M. Mikelsons, and M.
N. Wegman, ‘“A program development tool,”’ IBM J. Res. Develop.,
vol. 28, pp. 60-73, Jan. 1984,

[2] 1. E. Archer, R. Conway, and F. B. Schneider, ‘‘User recovery and
reversal in interactive systems,”” ACM Trans. Program. Lang. Syst.,
vol. 6, pp. 1-19, Jan. 1984.

[3] F. T. Baker, ‘‘Structured programming in a production programming
environment,”’ IEEE Trans. Software Eng., vol. SE-1, June 1975.

[4] F. P. Books, Jr., The Mythical Man-Month: Essays in Software En-
gineering. Reading, MA: Addison-Wesley, 1975.

[5]1 J. N. Buxton and L. E. Druffel, ‘‘Rationale for Stoneman,’’ in Proc.
4th Int. Comput. Software and Applications Conf., Oct. 1980, pp.

66-72. Reprinted in Interactive Programming Environments, D. R.”

Barstow, H. E. Shrobe, and E. Sandewall, Eds. New York: Mc-
Graw-Hill, 1984, pp. 535-545.

[6] R. H. Campbell and P. A. Kirslis, ‘*The SAGA project: A system for

software development,”” in Proc. ACM SIGSOFT/SIGPLAN Software

Eng. Symp. Prac. Software Develop. Env., Apr. 1984, pp. 73-80.

R. Chandhok, D. Garlan, D. Goldenson, M. Tucker, and P. Miller,

*“‘Structure editing-based programming environments: The GNOME

approach,”” in Proc. NCC 85, July 1985.

[8] R. Conway, D. DeJohn, and S. Worona, *‘A user’s guide to the COPE
programming environment,”’ Dep. Comput. Sci., Cornell Univ., Ith-
aca, NY, Tech. Rep. 84-599, Apr. 1984.

[91 A. Demers, T. Reps, and T. Teitelbaum, ‘‘Incremental evaluation for
attribute grammars with applications to syntax-directed editors,’” in
Conf. Rec. 8th Annu. ACM Symp. Principles of Program. Lang., Jan.
1981.

[10] F. DeRemer and H. Kron, ‘‘Programming-in-the-large versus pro-
gramming-in-the-small,”” IEEE Trans. Software Eng., vol. SE-2, pp.
80-86, June 1976.

[11] N. M. Deslisle, D. E. Menicosy, and M. D. Schwartz, ““Viewing a
programming environment as a single tool,”” in Proc. ACM SIG-
SOFT/SIGPLAN Software Eng. Symp. Prac. Software Develop. Eng.,
Apr. 1984, pp. 49-56.

[7

—

[12] T. A. Dolotta, R. C. Haight, and I. R. Mashey, “‘UNIX time-sharing
system: The programmer’s workbench,’” Bell Syst. Tech. J., vol. 57,
part 2, July-Aug. 1978. Reprinted in Interactive Programming En-
vironments, D. R. Barstow, H. E. Shrobe, and E. Sandewall, Eds.
New York: McGraw-Hill, 1984, pp. 353-369.

[13] V. Donzeau-Gouge, G. Huet, G. Kahn, B. Lang, and J. J. Levy, “‘A
structure oriented program editor: A first step towards computer as-
sisted programming,”” INRIA Tech. Rep. 114, Apr. 1975.

[14] V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang, ‘‘Programming
environments based on structure editors: The mentor experience,’’
INRIA Tech. Rep. 26, May 1980. Reprinted in Interactive Program-
ming Environments, D. R. Barstow, H. E. Shrobe, and E. Sandewall,
Eds. New York: McGraw-Hill, 1984, pp. 128-140.

[15] V. Donzeau-Gouge, G. Kahn, B. Lang, and B. Melese, ‘‘Documents
structure and modularity in Mentor,”’ in Proc. ACM SIGSOFT/SIG-
PLAN Software Eng. Symp. Prac. Software Develop. Env., Apr. 1984,
pp. 141-148.

[16] R. J. Ellison and B. J. Staudt. “‘The evolution of the Gandalf sys-
tem,”’ J. Syst. Software, vol. 5, pp. 107-119, May 1985.

[17] G. Engels, C. Lewerentz, M. Nagl, and W. Schafer, ‘On the struc-
ture of an incremental and integrated software development environ-
ment,”’ in Proc. 19th Annu. Hawaii Int. Conf. Syst. Sci., 1986.

[18] P. H. Feiler, ‘‘A language-oriented interactive programming environ-
ment based on compilation technology,’’ Ph.D. dissertation, Dep.
Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, 1982,

[19] P. H. Feiler and G. E. Kaiser, ‘‘Display-oriented structure manipu-
lation in a multi-purpose system,”” in Proc. IEEE Comput. Soc. 7th
Int. Comput. Software and Applicat. Conf. (COMPSAC 83), Nov.
1983.

[20] S. I. Feldman, ‘‘Make—A program for maintaining computer pro-
grams,’’ Software Practice and Experience, vol. 9, Apr. 1979,

[21] C. N. Fisher, G. F. Johnson, J. Mauney, A. Pal, and D. L. Stock,
*“The POE language-based editor project,”” in Proc. ACM SIGSOFT/
SIGPLAN Software Eng. Symp. Prac. Software Develop. Env., Apr.
1984, pp. 21-29.

[22] P. Fritzson, ‘‘Preliminary experience from the DICE system, a dis-
tributed incremental compiling environment,”’ in Proc. ACM SIG-
SOFT/SIGPLAN Software Eng. Symp. Prac. Software Develop. Env.,
Apr. 1984, pp. 113-123.

[23] ——, ““Towards a distributed programming environment based on in-
cremental compilation,”” Ph.D. dissertation, Dep. Comput. and In-
form. Sci., Linkoping Univ., 1984.

[24] E. Gansner, J. R. Horgan, D. J. Moore, P. T. Surko, and D. E.
Swartwout, ‘‘SYNED—A language-based editor for an interactive
programming environment,”” in Dig. Papers Spring CompCon 83,
IEEE Comput. Soc., Nov. 1982.

[25] D. B. Garlan and P. L. Miller, ‘*‘GNOME: An introductory program-
ming environment based on a family of structure editors,”” in Proc.
ACM SIGSOFT/SIGPLAN Software Eng. Symp. Prac. Sofiware De-
vel. Env., Apr. 1984, pp. 65-72.

{26] A. Goldberg and D. Robson, Smalltalk-80: The Language and its Im-
plementation. Reading, MA: Addison-Wesley, 1983.

[27] A. Goldberg, Smalitalk-80: The Interactive Programming Environ-
ment. Reading, MA: Addison-Wesley, 1984.

[28] A. N. Habermann and D. Perry, ‘‘Well-formed system composi-
tions,”’ Dep. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA,
Tech. Rep. CMU-CS-80-117, Mar. 1980.

[29]1 R. Hood and K. Kennedy, ‘‘A programming environment for For-
tran,’” in Proc. 18th Annu. Hawaii Int. Conf. Syst. Sci., 198S.

[30] J. R. Horgan and D. 1. Moore, “*Techniques for improving language-
based editors,”” in Proc. ACM SIGSOFT/SIGPLAN Software Eng.
Symp. Prac. Software Develop. Env., Apr. 1984, pp. 7-14.

[31] G. Kahn, B. Lang, B. Melese, and E. Morcos, ‘‘Metal: A formalism
to specify formalisms,”” INRIA Tech. Rep., 1982.

[32] G. E. Kaiser, ‘‘Semantics for structure editing environments,”’ Ph.D.
dissertation, Dep. Comput. Sci., Carnegie-Mellon Univ., Pitts-
burgh, PA, 1985.

[33] G. E. Kaiser and A. N. Habermann, ‘“‘An environment for system
version control,” in Dig. Papers Spring Compcon '83, IEEE Com-
put. Soc., Nov. 1982.

[34] G. E. Kaiser and P. H. Feiler, ‘*Generation of langnage-oriented ed-
itors,” in Programmierumgebungen und Compiler, German Chapter
of the ACM, Apr. 1984.

[35] B. W. Kemighan and D. M. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall Software Series, 1978.

[36] B. W. Kernighan and J. R. Mashey, **The UNIX programming en-
vironment,”” Computer, vol. 14, pp. 25-34, Apr. 1981. Reprinted in
Interactive Programming Environments, D. R. Barstow, H. E.

HABERMANN AND NOTKIN: GANDALF: SOFTWARE DEVELOPMENT ENVIRONMENTS

Shrobe, and E. Sandewall, Eds.
pp. 175-197.

[37] P. A. Kirslis, R. B. Terwilliger, and R. H. Campbell, ‘“The SAGA
approach to large program development in an integrated modular en-
vironment,”” in Proc. GTE Workshop Software Eng. Env. for Pro-
gramming-in-the-Large, June 1985.

[38] B. W. Lampson and E. E. Schmidt, ‘‘Organizing software in a dis-
tributed environment,”’ in Proc. SIGPLAN °83 Symp. Program. Lang.
Issues in Software Syst., June 1983, pp. 1-13.

[39] R. Medina-Mora and P. Feiler, ‘“‘An incremental programming en-
vironment,” IEEE Trans. Software Eng., vol. SE-7, pp. 472-482,
Sept. 1981.

[40] R. Medina-Mora, ‘‘Syntax-directed editing: Towards integrated pro-

New York: McGraw-Hill, 1984,

gramming environments,”” Ph.D. dissertation, Dep. Comput. Sci., -

Carnegie-Mellon Univ., Pittsburgh, PA, 1982.

[41] R. Medina-Mora, D. Notkin, and R. Ellison, *‘Aloe users’ and im-
plementors’ guide,” in Second Compendium of Gandalf Documen-
tation, Dep. Comput. Sci., Carnegie-Mellon Univ., May 1982.

[42] M. Mikelsons and M. N. Wegman, ‘“PDE1L: The PLIL programs
development environment (principles of operation),”” Dep. Comput.
Sci., IBM T. J. Watson Research Center, Yorktown Heights, NY,
Tech. Rep. RC 8513, Sept. 1980.

[43] D. Notkin, ‘‘Interactive structure-oriented computing,”” Ph.D. dis-
sertation, Dep. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh,
PA, 1984.

[44] ——, *“The Gandalf project,”’ J. Syst. Software, vol. 5, pp- 91-106,
May 1985.

[45] L. J. Osterweil, ‘*Toolpack—An experimental software development
environment research project,”” IEEE Trans. Software Eng., vol. SE-
9, pp. 673-685, Nov. 1983.

[46] R. E. Pattis, Karel the Robot: A Gentle Introduction to the Art of
Programming. New York: Wiley, 1981.

[47] S. P. Reiss, ““PECAN: Program development Systems that support
multiple views,”’ in Proc. 7th Int. Conf. Software Eng., IEEE Com-
put. Soc., Mar. 1984,

[48] —, *‘Graphical program development with PECAN program devel-
opment systems,’’ in Proc. ACM SIGSOFT/SIGPLAN Sofrware Eng.
Symp. Prac. Software Develop. Env., Apr. 1984, pp. 30-41.

[49] T. Reps, ‘‘The synthesizer editor generator: Reference manual,”’ Dep.
Comput. Sci., Cornell Univ., Ithaca, NY, 1981.

[50] —, *‘Optimal-time incremental semantic analysis for syntax-di-
rected editors,”” in Conf. Rec. 9th Annu. ACM Symp. Principles of
Program. Lang., Jan. 1982,

[51} —, *‘Static-semantic analysis in language-based editors,”’ in Dig.
Papers Spring CompCon °83, IEEE Comput. Soc., Nov. 1982,
[52] ~——, Generating Language-Based Environments (ACM Doctoral

Dissertation Award Series). Cambridge, MA: M.L.T. Press, 1983.

[53] T. Reps, T. Teitelbaum, and A. Demers, ‘‘Incremental context-de-
pendent analysis for language-based editors,”” ACM Trans. Program
Lang. Syst., vol. 5, pp. 449-477, July 1983.

[54] T. Reps and T. Teitelbaum, ‘‘The synthesizer generator,” in Proc.
ACM SIGSOFT/SIGPLAN Software Eng. Symp. Prac. Software De-
velop. Env., Apr. 1984, pp. 42-48.

[551 M. Rochkind, ‘*The source code control system,’ IEEE Trans. Soft-
ware Eng., vol. SE-1, pp. 364-370, Dec. 1975.

[56] R. Snowden, *‘An experience-based assessment of development sys-
tems,’” in Software Development Tools, W. E. Riddle and R. E. Fair-
ley, Eds. New York: Springer-Verlag, 1980.

[57]1 T. A. Standish and R. N. Taylor, ‘‘Arcturus: A prototype advanced
Ada programming environment,’” in Proc. ACM SIGSOFT/SIGPLAN
Software Eng. Symp. Prac. Software Develop. Env., Apr. 1984, pp-
57-64.

[58] R. E. Sweet, *“The Mesa programming environment,”’ in Proc. ACM
SIGPLAN 85 Symp. Lang. Issues in Program. Env., July 1985, pp.
216-229.

[59] D. C. Swinehart, P. T. Zellweger, and R. B. Hagmann, *‘The struc-
ture of Cedar,”’ in Proc. ACM SIGPLAN 85 Symp. Lang. Issues in
Program. Env., July 1985, pp. 230-244.

[60] W. Teitelman, ‘A tour through Cedar,”’ IEEE Software, vol. 1, Apr.
1984.

[61] W. Teitelman and L. Masinter, **The Interlisp programming environ-
ment,”’ Computer, vol. 14, pp. 25-34, Apr. 1981. Reprinted in In-

1127

teractive Programming Environments, D. R. Barstow, H. E. Shrobe,
and E. Sandewall, Eds. New York: McGraw-Hill, 1984, pp. 83-
96. .

[62] T. Teitelbaum and T. Reps, ‘“The Cornell Program Synthesizer: A
syntax-directed programming environment,”’> Commun. ACM, vol. 24,
pp- 563-573, Sept. 1981. Reprinted in Interactive Programming En-
vironments, D. R. Barstow, H. E. Shrobe, and E. Sandewall, Eds.
New York: McGraw-Hill, 1984, pp. 97-116.

[63] T. Teitelbaum, T. Reps, and S. Horwitz, ‘‘The why and wherefore
of the Cornell Program Synthesizer,”” in Proc. ACM SIGPLAN/
SIGOA Symp. Text Manipulation, June 1981, pp. 8-16.

[64] W. Tichy, ‘‘Design, implementation, and evaluation of a revision
control system,’” in Proc. 6th Int. Conf. Software Eng., Sept. 1982.

[65]1 U.S. Dep. Defense, ‘‘Reference manual for the Ada programming
language,”” Rep. ANSI/MIL-STD-1815A, Jan. 1983.

[66] N. Wirth, Programming in Modula-2.. New York: Springer-Verlag,
1983.

[67] Unix Programmer’s Manual, Tth ed., Division Comput. Sci., Dep.
Elec. Eng. and Comput. Sci., Univ. California at Berkeley.

A. Nico Habermann received the M.S. degree in
mathematics from Free University, Amsterdam,
The Netherlands, and the Ph.D. degree in applied
mathematics from the Technological University,
Eindhoven, The Netherlands, in 1967.

He worked with Dr. E. W. Dijkstra on the THE
system for which he wrote the Algol60 interface.
After visiting Camegie-Mellon University, Mas-
sachusetts Institute of Technology, DEC, and
IBM, he came to CMU as an Associate Professor
in 1969. He was promoted to Full Professor in
1974 and became Department Head of Computer Science in 1979. He was
instrumental in establishing the Software Engineering Institute at CMU and
was the Acting Director of the Institute in 1985. His main interests are in
programming languages, operating systems, software engineering, and
programming environments. He has worked on language design and im-
plementation for Algol60, Bliss, Pascal, Ada, and various special purpose
languages. He has worked on several practical and experimental operating
systems such as the THE system, the Family of Operating Systems (FA-
MOS), the Dynamically Adaptable System (DAS), and UNIX. He has writ-
ten two books: one on operating system design and one of the Ada language
(with Dr. Perry). Some of his best known contributions to the field are a
critique on the Pascal language, work on deadlock prevention, path expres-
sions (with Dr. Campbell), an efficient implementation of Ada tasking (with
Dr. Nassi) and the integrated approach to software development, which is
demonstrated by the Gandalf project. He has served on numerous program
committees and consults for several computer firms. He spent a year at the
University of Newcastle upon Tyne, England (1973), at the Technological
University of Berlin, Germany (1976), and at Siemens Corporation in
Munich, Germany (1983).

Dr. Habermann is a member of IBM’s Scientific Advisory Committee,
of the Advisory Committee for Computer Science of the National Science
Foundation, and is an editor for Acta Informatica and the ACM Transac-
tions on Programming Languages and Systems (TOPLAS).

David Notkin (S’77-M’82) received the Sc.B.
degree in computer science from Brown Univer-
sity, Providence, RI, in 1977, and the Ph.D. de-
gree in computer science from Carnegie-Mellon
University, Pittsburgh, PA, in 1984.

He has been an Assistant Professor in the De-
partment of Computer Science at the University
of Washington, Seattle, since September 1984.
His current research interests include: software
development environments; adaptable, flexible
extendable, and customizable systems; program-
ming-in-the-large; version control; structure-oriented editors; interactive
programs; and program generation.

