
1

Static Analyzers

Wolfgang Emmerich
Professor of Distributed Computing

University College London

http://sse.cs.ucl.ac.uk

2

Context

Requirements

Analysis

Design

Implementation

Test

Inception Elaboration Construction Transition

I1 I2 In In+1 In+2 ImPreliminary
Iterations

3

Learning Objectives

• To appreciate the basic requirements of static

analyzers

• To understand how static analyzers are specified

and implemented

• To know the design patterns used in static analyzers

• To understand how static control-flow and data-flow

analysis algorithms can be built on top of the object

management primitives provided by an IDE

2

4

Recap: What is static analysis?

• Techniques for checking the static semantics of

formal languages

• Implemented in compilers and program editors

• Static analysis techniques are also used to enforce

programming conventions and aid design reviews to

highlight poor programming practices

• Not constrained to programming languages, e.g.

– Check correct use of SQL schema in embedded queries

– Check correct use of XML schemas in web service

interface definitions

5

Static analyzers

• Static analysis implemented by static analyzers

• Integral part of any IDE

• Key requirements

– Efficient calculation of analysis results using

• Control-flow analysis

• Data-flow analysis

– Incremental re-calculation during edits

– Visualization of static analysis results

– Derivation of information required for code generation

– Integration with task management

– Extensibility (build your own analyzers)

6

Specifying static analyzers

• Parsers are specified by context-free grammars (for
example in BNFs or syntax diagrams)

• Context-free grammars are not sufficiently
expressive for specifying the context-sensitive and
semantic conditions to be checked by a static
analyzer

• These are commonly specified using attribute
grammars that were first introduced by [Knuth 1968]

• Are used extensively in compiler and program editor
design

3

7

Attribute Grammars

• Attribute Grammars (AGs) are an extension of

context-free grammars.

• Basic idea:

– Associate attributes with symbols of the grammar

– Add semantic rules to derive attribute values in productions

– Add conditions to productions that check static semantics

• This is very simple and elegant

• Efficient implementations of static analyzers can be

derived from AGs automatically for program editors

[Reps 1989] or compilers [Kastens et al, 1982]

8

boolean looking, found;

…

if (looking && !found) {…}

Attribute Grammar Example

• Consider:

• Aim: check type compatibility within expressions

• Add attribute type to all required symbols

• Semantic rules to derive value of type

• Conditions to check that

– Type of expression in if statement is boolean

– Operators used within expression are compatible with

arguments

9

Initial Attributed Abstract Syntax Tree

VarRef

id=looking

AndExpr

VarRef

id=found

NotExpr

IfStmtVarDecl

VarName

id=looking

VarName

id=found

Block

Block

boolean looking, found;

…

if (looking && !found) {…}

VarType

Id=boolean

4

10

Variable Declaration

VarRef

id=looking

AndExpr

VarRef

id=found

NotExpr

IfStmtVarDecl

VarName

id=looking

VarName

id=found

Block

Block

VarType

Id=boolean

Type=boolean

VarName[1].Type:=VarDecl.Type;

VarName[2].Type:=VarDecl.Type;

Type=boolean Type=boolean

VarDecl.Type:=VarType.Id;

Semantic Rule associated with production:

11

VarRef

id=looking

AndExpr

VarRef

id=found

NotExpr

IfStmtVarDecl

Type=boolean

VarName

id=looking

Type=boolean

VarName

id=found

Type=boolean

Block

Block

VarType

Id=boolean

Type checking expression

• Assuming scope analysis has established use/def

edge (referred to as decl)

Cond: NotExpr.Type==VarRef.decl.Type;

NotExpr.Type:=VarRef.decl.Type;

Type=boolean

12

Checking that ‘if’ expression is boolean

VarRef

id=looking

AndExpr

VarRef

id=found

NotExpr

IfStmtVarDecl

Type=boolean

VarName

id=looking

Type=boolean

VarName

id=found

Type=boolean

Block

Block

VarType

Id=boolean

Condition: AndExpr.Type==boolean;

AndExpr.Type:=VarRef.decl.Type;

Type=boolean

Type=boolean

5

13

Well-defined attribute grammars

• An attribute is called:

– Inherited if its value is determined by values of attributes of

the parent node (e.g. VarName.Type)

– Synthesized if its value is determined by values of child

nodes (e.g. AndExpr.Type)

• The sets of inherited and synthesized attributes are

disjoint

• Attribute grammars are well-defined (WAG) iff there

is no circular dependency between attributes.

• It is NP complete to decide if an AG is a WAG.

14

Ordered Attribute Grammars

• An AG is ordered AG (OAG) if for each symbol a

partial order over the associated attributes can be

given, such that in any context of the symbol the

attributes are evaluable in an order which includes

that partial order.

• Every OAG is a WAG

• It is efficiently decidable whether an AG is an OAG

• An evaluation order for attributes can be calculated

automatically in polynomial time.

15

AST Traversals

• AG evaluations need to traverse the AST established

by an incremental parser.

• Enrich AST with attributes or semantic links (ASG)

• Execute the semantic rules

• Rule execution needs to be done in the right order

• Requires extensive traversals of the ASG

• Often done using the ‘visitor’ design pattern.

6

16

Visitor Pattern

• Aim: separate the implementation of an algorithm

that traverses a complex structure from the

implementation of the structure itself

• Used extensively in IDEs to implement static analysis

algorithms that traverse the ASG

• Principle participants:

– Element Types (i.e. the AST nodes)

– Visitor (i.e. a base class to permit visits)

– Concrete Visitor (an implementation of the abstract visitor)

17

Visitor Pattern Example in Eclipse JDT

public cclass MetricsCalculator {
 int numMethods;

 ppublic iint countClasses(){

 ICompilationUnit icu= … // get from the Java Model

 ASTParser parser= ASTParser.newParser(AST.JLS3);

 parser.setSource(icu);

 ASTNode root=parser.createAST(nnull);

 root.accept(nnew ASTVisitor() {

 public bboolean visit(MethodDeclaration node){

 numMethods++;

 System.out.println("Found class: "+node.getName());

 return ttrue;

 }

 });

 }

}

18

Key Points

• Static analyzers specified
using attribute grammars

• Evaluation of attribute
grammars requires
extensive traversals of
ASTs

• AST managed by Object
Management primitives of
the IDE

• Analyzers are separated
using visitor pattern

7

19

References

• D. Knuth. Semantics of context-free languages. Theory of
Computer Systems 2(2):127-145. 1968. DOI:
10.1007/BF01692511

• K. Slonneger and B. Kurtz. Formal syntax and semantics of
programming languages. Addison Wesley. 1995.
www.cs.uiowa.edu/~slonnegr/plf/Book/Chapter3.pdf

• T. Reps and T. Teitelbaum. The Synthesizer Generator
Reference Manual. Springer. 1989.

• U. Kastens. Ordered Attributed Grammars. Acta Informatica
13:229-256. 1980.

• U. Kastens et al. GAG: A Practical Compiler Generator.
Springer LNCS 141. 1982.

• E. Gamma et al. Design Patterns. Addison Wesley. 1995

