
1

Software Configuration

Management

Wolfgang Emmerich
Professor of Distributed Computing

University College London

http://sse.cs.ucl.ac.uk

2

Context

Requirements

Analysis

Design

Implementation

Test

Inception Elaboration Construction Transition

I1 I2 In In+1 In+2 ImPreliminary
Iterations

3

Learning Objectives

• To understand why SCM is of crucial importance in

medium to large-scale software development

projects

• To know the principles of version management and

software configuration management

• To appreciate how SCM tools support coordination

within a team of developers

• To be able to use an state-of-the-art SCM tool in

your group project and beyond



2

4

Why do we need SCM?

• Teamwork: multiple developers need a

– Mechanism to share their artifacts

– Update these artifacts in a controlled manner

• Maintenance: Teams need to

– Deliver projects in several releases and

– be able to re-establish earlier release, e.g. to provide a bug

fix

– Merge such changes into the current development

baseline

• Safety net: Be able to revert to artifacts that were

found to be of a certain quality level

5

Variants and Revisions

• Artifacts that exist in different versions are known as

configuration items

• Revisions are versions of a configuration item that

have emerged over time. They have revision

numbers that are usually incremented from revision

to revision

• Variants are versions of a configuration item that co-

exist (at least for some time)

1.1 1.2 1.3
Entity.java

Session.java

1.1

1.1.1

1.1.2

6

Configuration

• A configuration consists of a number of configuration

items. For each of these items one and only one

version is selected to be part of the configuration.

• Version selection can be implicit (e.g. the last

revision) or explicit (through tags/labels that mark a

particular milestone or release)

1.1
Entity.javaSession.java

1.1.1

Release 1.0



3

7

Repository

• SCM repositories store CIs and their configurations

• Repositories are typically stored on a shared server

that is accessible to all team members

• Developers have their own private workspace

• Transfers between repository / workspace through

check-out and check-in operations

SCM Repository

check-out
check-in

check-out

check-in

8

Concurrency Control in SCM

• Multiple developers may want to access the
same CI

• Access needs to be synchronized

• Two different models:

– Pessimistic: Use of locking and unlocking to
prevent more than one developer to change a CI
at the same time (used in VSS, for example)

– Optimistic: Users modify private copies only and
may do so concurrently. Private copies are
merged together into a new version (This model is
used in CVS and subversion)

9

Problems with Locking

• Developers may forget to unlock a file after they

have finished updating it

• It is possible that two developers want to edit disjoint

sections of the same file and that is not permitted in

the pessimistic model.

• Locking might give a false sense of security. Assume

Alice locks Session and Bob locks Entity. Because

Session calls Entity then Session might not compile

after a new version of Entity is checked in. If the

entire call graph is locked teamwork grinds to a halt.



4

10

How optimistic concurrency control works

Repository

Alice and Bob both

check out file

Entity.java.

Here, check-out does

not lock but only

creates a copy in the

private workspaces.

Entity.java

1.2

Entity.java

1.2

Entity.java

1.2

11

How optimistic concurrency control works

Now both Alice and

Bob modify their copy

of Entity.java in their

private workspace

Repository

Entity.java

1.2

Entity.java

1.3

Entity.java

1.3

12

How optimistic concurrency control works

Alice commits her

changes to the

repository first

Repository

Entity.java

1.2

Entity.java

1.3

Entity.java

1.3

1.3



5

13

How optimistic concurrency control works

If then Bob tries to

commit he will get a

conflict and the

commit will fail.

Repository

Entity.java

1.2

Entity.java

1.3

Entity.java

1.3

1.3

14

How optimistic concurrency control works

Bob checks out Alice’s

version and in his

workspace merges his

changes with Alice’s

Repository

Entity.java

1.2

Entity.java

1.3

Entity.java

1.4

1.3

15

How optimistic concurrency control works

Bob can then commit

the merged file to the

repository

Repository

Entity.java

1.2

Entity.java

1.3

Entity.java

1.4

1.3 1.4



6

16

Common practice

• If two people have a file checked out, they have to

merge their changes before check-in

• Merging files can be time consuming (though there is

tool support)!

• People often coordinate verbally so that merging

does not become necessary

• Also responsible developers do not hold modified

files for too long

17

Tagging and Branching

• The configuration used in the main line of

development is often referred to as the trunk

• A branch is the configuration for a particular side line

of development (e.g. maintenance, or new feature

development) that should be done in temporary

isolation from main line of development

• A tag is a configuration snapshot that you want to

keep to be able to restore it later. You would typically

create tags for any releases you make to clients or

the public

18

SCM support for tagging and branching

• Logically tags and branches are just copies of the

configuration items, which is supported by SCM tools

• In practice repositories would run out of storage

quickly if SCM tools were to physically copy all files

whenever a tag or a branch is created.

• Tools instead share physical copies of the same

version of a CI across different branches and tags

• Selective copying of CIs across different branches /

tags.



7

19

Overview of current SCM tools

• Subversion (open source, we will use this in the labs)

• CVS (open source)

• RCS (can only handle versions, not configurations)

• Clearcase (IBM)

• P4 (Perforce Software)

• Source Safe (Microsoft)

• PVCS (Serena Software)

20

Key Points

• SCM tools are enablers of

teamwork by providing

– Sharing when needed

– Isolation when required

• Provide safety net to

restore previous releases

• Very good open source

tools available for SCM

21

References

• J. Estublier et al.: Impact of software engineering

research on the practice of software configuration

management. ACM ToSEM 14(4):383-430.2005.

DOI: 10.1145/280277.280280

• R. Conradi and B. Westfechtel. Version Models for

Software Configuration Management. ACM

Computing Surveys 30(2):232-282. 1998. DOI:

10.1145/1101815.1101817

• B. Collins-Sussman et al. Version control with

subversion. O’Reilly Media. 2002. http://svnbook.red-

bean.com/


