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Learning Objectives

• To understand why SCM is of crucial importance in

medium to large-scale software development

projects

• To know the principles of version management and

software configuration management

• To appreciate how SCM tools support coordination

within a team of developers

• To be able to use an state-of-the-art SCM tool in

your group project and beyond
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Why do we need SCM?

• Teamwork: multiple developers need a

– Mechanism to share their artifacts

– Update these artifacts in a controlled manner

• Maintenance: Teams need to

– Deliver projects in several releases and

– be able to re-establish earlier release, e.g. to provide a bug

fix

– Merge such changes into the current development

baseline

• Safety net: Be able to revert to artifacts that were

found to be of a certain quality level
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Variants and Revisions

• Artifacts that exist in different versions are known as

configuration items

• Revisions are versions of a configuration item that

have emerged over time. They have revision

numbers that are usually incremented from revision

to revision

• Variants are versions of a configuration item that co-

exist (at least for some time)

1.1 1.2 1.3
Entity.java

Session.java

1.1

1.1.1

1.1.2
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Configuration

• A configuration consists of a number of configuration

items. For each of these items one and only one

version is selected to be part of the configuration.

• Version selection can be implicit (e.g. the last

revision) or explicit (through tags/labels that mark a

particular milestone or release)

1.1
Entity.javaSession.java

1.1.1

Release 1.0
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Repository

• SCM repositories store CIs and their configurations

• Repositories are typically stored on a shared server

that is accessible to all team members

• Developers have their own private workspace

• Transfers between repository / workspace through

check-out and check-in operations

SCM Repository

check-out
check-in

check-out

check-in
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Concurrency Control in SCM

• Multiple developers may want to access the
same CI

• Access needs to be synchronized

• Two different models:

– Pessimistic: Use of locking and unlocking to
prevent more than one developer to change a CI
at the same time (used in VSS, for example)

– Optimistic: Users modify private copies only and
may do so concurrently. Private copies are
merged together into a new version (This model is
used in CVS and subversion)
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Problems with Locking

• Developers may forget to unlock a file after they

have finished updating it

• It is possible that two developers want to edit disjoint

sections of the same file and that is not permitted in

the pessimistic model.

• Locking might give a false sense of security. Assume

Alice locks Session and Bob locks Entity. Because

Session calls Entity then Session might not compile

after a new version of Entity is checked in. If the

entire call graph is locked teamwork grinds to a halt.
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How optimistic concurrency control works

Repository

Alice and Bob both

check out file

Entity.java.

Here, check-out does

not lock but only

creates a copy in the

private workspaces.

Entity.java

1.2

Entity.java

1.2

Entity.java

1.2
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How optimistic concurrency control works

Now both Alice and

Bob modify their copy

of Entity.java in their

private workspace

Repository

Entity.java

1.2

Entity.java

1.3

Entity.java

1.3
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How optimistic concurrency control works

Alice commits her

changes to the

repository first

Repository

Entity.java

1.2

Entity.java

1.3

Entity.java

1.3

1.3
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How optimistic concurrency control works

If then Bob tries to

commit he will get a

conflict and the

commit will fail.

Repository

Entity.java

1.2

Entity.java

1.3

Entity.java

1.3

1.3
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How optimistic concurrency control works

Bob checks out Alice’s

version and in his

workspace merges his

changes with Alice’s

Repository

Entity.java

1.2

Entity.java

1.3

Entity.java

1.4

1.3
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How optimistic concurrency control works

Bob can then commit

the merged file to the

repository

Repository

Entity.java

1.2

Entity.java

1.3

Entity.java

1.4

1.3 1.4
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Common practice

• If two people have a file checked out, they have to

merge their changes before check-in

• Merging files can be time consuming (though there is

tool support)!

• People often coordinate verbally so that merging

does not become necessary

• Also responsible developers do not hold modified

files for too long
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Tagging and Branching

• The configuration used in the main line of

development is often referred to as the trunk

• A branch is the configuration for a particular side line

of development (e.g. maintenance, or new feature

development) that should be done in temporary

isolation from main line of development

• A tag is a configuration snapshot that you want to

keep to be able to restore it later. You would typically

create tags for any releases you make to clients or

the public
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SCM support for tagging and branching

• Logically tags and branches are just copies of the

configuration items, which is supported by SCM tools

• In practice repositories would run out of storage

quickly if SCM tools were to physically copy all files

whenever a tag or a branch is created.

• Tools instead share physical copies of the same

version of a CI across different branches and tags

• Selective copying of CIs across different branches /

tags.
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Overview of current SCM tools

• Subversion (open source, we will use this in the labs)

• CVS (open source)

• RCS (can only handle versions, not configurations)

• Clearcase (IBM)

• P4 (Perforce Software)

• Source Safe (Microsoft)

• PVCS (Serena Software)
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Key Points

• SCM tools are enablers of

teamwork by providing

– Sharing when needed

– Isolation when required

• Provide safety net to

restore previous releases

• Very good open source

tools available for SCM
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