
1

Debuggers

Wolfgang Emmerich
Professor of Distributed Computing

University College London

http://sse.cs.ucl.ac.uk

2

Context

Requirements

Analysis

Design

Implementation

Test

Inception Elaboration Construction Transition

I1 I2 In In+1 In+2 ImPreliminary
Iterations

3

Learning Objectives

• To appreciate the tool support that debuggers make

available for understanding the cause of defects

• To understand the basic requirements that

programmers have for debuggers

• To be able to use the debugging functionality that

modern debuggers provide effectively

• To be aware that it is possible to extend debugging

functionality to non-traditional languages (e.g. BPEL)



2

4

What is a debugger?

• A debugger is a tool that supports programmers in

the task of understanding the cause of defects in

computer programs

• Debuggers are a complementary to, and not a

replacement for, testing tools

• Used to be sniffed at by (theoretical) computer

scientists who argued that they are unnecessary

because programs should be correct from the start

• Instead debuggers are crucial tools for detecting the

cause of defects in a cost-effective manner

5

Bug tracking, testing tools and debuggers

• Defects get lodged in bug or
issue management tools
(e.g. bugzilla)

• Next use testing tools (e.g.
FitNesse) to add a test case
to your test suite to detect
and reproduce the defect

• In order to understand why
that defect appears you use
a debugger

• You might find further bugs
while doing so and you then
lodge them in the bug
tracker, write tests, …

6

Requirements for debuggers

• Tools to “open the program black-box”

• Check that program instructions have the desired effect

• To do this need to be able to:

– Break / resume the execution

– Execute a program step-by-step

– Introspect the program state

• Object state,

• Local variable and parameter values

• Thread structure

• Call stack

– Evaluate expressions on the fly

– Trace program execution

• At source-code abstraction level



3

7

Example: Eclipse JDT Debugging Perspective

8

Breakpoints

• A breakpoint determines

when program execution

should be suspended

• Manage more than one

breakpoint

– Enable breakpoints

– Suspend breakpoints

• Conditional breakpoints

– Only stop when a condition is

true

– Only stop when an exception

is raised

9

Stepping through a program

• Once execution has been

suspended programmers

want to step through code

• Cursor highlights current

program position

• Stepping into/over/out from

method calls

• Cursor changes to next

statement that will be

executed

• Continue execution until the

next breakpoint



4

10

Introspection of objects and variables

• Check which fields constitute

the state of objects

• Check the value of

– fields

– local variables

– parameters

• Display value of expressions

• Watch how the value of

expressions changes over time

11

Introspection of threads and call stack

• Important to understand how

many threads there are

• Need to know which thread is

doing what

• Can set breakpoints and once a

thread reaches one it will be

suspended

• Then debugger should allow

introspection of the call stack

• Helps to ascertain correctness of

call graph

• Navigation to source code using

the call graph information

12

Building debuggers

• Language-specific debug-

gers use extension mecha-

nisms to provide language-

specific support, e.g.

– Java debugger in JDT

– C++ debugger in CDT

• Debuggers are tools of

substantial size

– Eclipse Debugging Platform

has 146kLoC

– Eclipse JDT Debugger has

130kLoC

• Debugging support is part of

the Eclipse platform

• Offers language

independent debugging

support:

– Ability to lauch processes

– Concepts of breakpoints

– Correlate processes and

source code

– Editor / debugger interactions



5

13

Key Points

• Debuggers support
programmers in finding the
cause of defects by:

– Traversal through program
execution and

– Introspection of program
state

• Modern debuggers are
symbolic and work at
source-code level

• To achieve this debuggers
are integrated into IDEs


