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Learning Objectives

« Introduce the V-Model of quality assurance

¢ Stress the importance of testing in terms of software
engineering economics

« Understand that acceptance tests are requirements
specifications

« Introduce acceptance and integration testing tools for
Test Driven Development

« Appreciate that automated acceptance tests are
executable requirements specifications

V-Model in Distributed System Development

Requirements Acceptance
Test
Software Integration
Architecture Test
Detailed System
Design Test

See: B. Boehm Guidelines for
Verifying and Validating Software
Requirements and Design Code
Specifications. Euro IFIP, P. A.
Samet (editor), North-Holland
Publishing Company, IFIP, 1979. 3




Traditional Software Development
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Detailed System
Design Test

Test Driven Development of Distributed Systems
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These tests
Code should
be automated

Advantages of Test Driven Development

« Early definition of acceptance tests reveals
incomplete requirements

« Early formalization of requirements into automated
acceptance tests unearths ambiguities

« Flaws in distributed software architectures (there
often are many!) are discovered early

« Unit tests become precise specifications

« Early resolution improves productivity (see next
slide)




Software Engineering Economics
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An Example

Consider an on-line car dealership

User Story:

« | first select a locale to determine the language
shown at the user interface. | then select the SUV |
want to buy. The system would allow me to
customize it but | am happy with the base version.
The dealership shows me the configuration and |
confirm. | then enter my address and credit card
details and the system confirms that the car will be
shipped soon.
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Acceptance Testing the Car Dealer Web Site

« Translate each user story into a number of acceptance tests
* Cover both main flow of events and alternative flows
« Automate all acceptance tests, otherwise

— you can't be agile!

— it's too expensive

— you'll get bored with manual testing

— you might not detect defects that are re-introduced after they have
been fixed

— you might not be aware that a fix has broken other parts of the system
* Run automated acceptance tests whenever new candidate
release is to be deployed.

« If you find a defect in a deployed system write a new test case
that catches the defect before fixing it.

Test Automation Tools

¢ Automating tests is hard

¢ Fortunately it can be simplified by test automation
tools

e There are numerous commercial tools and a few
open source tools available developed by the agile
development community

« Of these we discuss Fit/FitNesse
http://www.fitnesse.org in more detail.

Automated Acceptance Tests with FIT/FitNesse

FitNesse FIT
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Continuing the example: A FitNesse test case
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Fixtures

« Automating these tests requires translation of the
domain specific language used in the acceptance
test into invocations of the system under test.

« Performed in FIT through Fixtures.

« Fixtures are a thin layer of “glue” code.

* May require specific drivers to interface with the

system (e.g. httpunit for web pages, JDBC for
databases or JMS for message queues).

Continuing the example - CarDealerFixture

public boolean setLocaleTo(String to){
WebForm localeForm;
WebRequest setlLocaleRequest;
if (to.equals("NAmerica") || to.equals("France") Il
to.equals("SAmerica") |1 to.equals("Germany")) {
carDealer=new WebConversation();
carDealerURL=new GetMethodWebRequest(args[0]);
try {
HttpUnitOptions. setExceptionsThrownOnScriptError( false );
carDealerResponse=carDealer.getResponse(carDealerURL);
localeForm=carDealerResponse.getFormWithID("localeButtons");
SubmitButton lang = localeForm.getSubmitButton("localeButtons:"+to);
setLocaleRequest=localeForm.getRequest(lang);
carDealerResponse=carDealer.getResponse(setLocaleRequest);
} catch (Exception e){e.printStackTrace(); return false;}
return true;
} else
return false;




* Example:

Building testable distributed systems

* Automated tests are distributed systems, too.
* Need “interfaces” for your fixtures in the system under test

™

public boolean setLocaleTo(String to){
WebForm localeForm;
WebRequest setlLocaleRequest;
carDealer=new WebConversation();
carDealerURL=new GetMethodWebRequest(
try {
HttpUnitOptions. setExceptionsThroi

return true;

<!-- chooselocale.jsp -->
<h:form id="localeButtons”> ..
<h:paneltrid id="buttons" columns="4"
summary="#{bundle.chooseLocale}"
title="#{bundle.chooselocale}">
<h:commandButton id="NAmerica”
action="storeFront”
valued"#{bundle.engli$h}” .>
</h:commandButton> ..
</h:form>

carDenlerResponse:carDealer.getResponse(carDealkrURL);
localeForm=carDealerResponse.getFormWithID("localeButtons");
SubmitButton lang = localeForm.getSubmitButton("localeButtons:"+to);
setLocaleRequest=localeForm.getRequest(lang);
carDealerResponse=carDealer.getResponse(setLocaleRequest);

} catch (Exception e){e.printStackTrace(); return false;}

User Story revisited

* Example:

Before:

| first select a locale to determine the
language shown at the user
interface. | then select the SUV |
want to buy. The system would allow
me to customize it but | am happy
with the base version. The
dealership shows me the
configuration and | confirm. | then
enter my address and credit card
details and the system confirms that
the car will be shipped soon.

* Acceptance tests lead to better understanding of user story.
* Keep user story updated and stored alongside tests

After:

From the choice of supported locales
(NAmerica, SAmerica, France and
Germany) | choose NAmerica. | then
select that | want to buy the SUV.
The system would allow me to
customize it but | am happy with the
base version. The dealership shows
me the configuration and | confirm. |
then enter my address and credit
card details and the system confirms
that the car will be shipped soon.
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But ...

distributed system yet?
¢ Solutions:

existing components

* How can you write the tests without having the

— In Agile development most often you have parts of the
distributed system already

— You also often already have the middleware
— Green-field developments are rare and you already have

— Use Mock components and objects for the really new stuff.

— Build Mock user interfaces (relatively fast using JSPs) -
this also helps in eliciting new requirements




Key Points

« Test driven development develops tests before the
entity under test is developed.

« The paradigm is applicable to acceptance,
integration, system and unit tests.

« Acceptance testing is requirements engineering

« Acceptance testing exercises the boundary of the
system

« Automated acceptance tests are executable
specifications

« Agile development is not possible without automated
testing




