UCL

C340 Concurrency:
Mutual Exclusion

Wolfgang Emmerich
Mark Levene

© Wolfgang Emmerich, 1997

ﬁ Goals of this lecture

Thread interaction via shared memory
Avoid interference

Synchronisation

Mutual exclusive access

»a

© Wolfgang Emmerich, 1997

% Ornamental Garden Problem

Garden open to the public
Enter through either one of two turnstiles
Computer to count number of visitors

Garden

East West

Turnstile Turnstile

Each turnstile implemented by a thread

© Wolfgang Emmerich, 1997

% Ornamental Garden: Counter class
e—,
class Counter {
| nt val ue =0;
opublic voird I ncrenent () {
int tenp = value ; //read
Simulate.interrupt();
++t enp; [[addl

val ue_ =t enp; [/wite
}
}
Simulated interrupt calls yi el d() to force
thread switch.

© Wolfgang Emmerich, 1997

4

% Ornamental Garden: Turnstile class
(m—

class Turnstile extends Thread {
Count er people_;
Turnsti|l e(Counter c) {

people = c;
}
public voird run() {
whi I e(true)
people .increnent(),;
}

}

For full implementation see online version

© Wolfgang Emmerich, 1997

A Ornamental Garden: Program

UCL

—

Count er people_ = new Counter();
Turnstile west = new Turnstil e(people);
Turnstile east = new Turnstil e(people);

west .start();
east .start();

What will happen?

Demo: Ornamental GardenJ

© Wolfgang Emmerich, 1997

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/Garden/Garden.html

% FSP Spec of Ornamental Garden

e,

const N= 3 range T = 0..N
VAR = VAR 0],
VAR[u: T] = (read[u] -> VAR U]
| wite[v:T]-> VAR v]).
TURNSTI LE = (arrive -> | NCREMENT
| suspend-> resune-> TURNSTI LE),
| NCREMENT = (val .read[x: T] -> val.wite[x+1]->
TURNSTI LE) +{val .read[T],val .wite[T]}.
| | GARDEN = (east: TURNSTILE || west: TURNSTI LE
|| {east, west, display}::val:VAR
)/ {stop/ east. suspend,
st op/ west . suspend, , \
start/east.start,
start/west.start}. \LTSA/

© Wolfgang Emmerich, 1997

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/LTSA/LTSA.html

% Interference
e—
FSP spec supports the following trace:

east.arrive - east.val.read.0- west.arrive —

west.val.read.0 — east.val.write.1 - west.val.write. 1
This is an example of a destructive update

Destructive updates caused by arbitrary
Interleaving of read and write actions on
shared variables is called interference

Avoid interference by making access to
critical sections mutually exclusive

© Wolfgang Emmerich, 1997

% Critical Section
—

A critical section is a sequence of actions
that must be executed by at most one
process at a time

Can be found by searching for sections of
code that access or update variables or
objects that are shared by concurrent
processes.

© Wolfgang Emmerich, 1997

% Modelling Mutual Exclusion

e,

A lock can be modelled by:
LOCK = (acquire->rel ease->L0OCK).

Attaching lock to shared resource (VAR):.
| | LOCKVAR = (LOCK || VAR).

Critical section acquires/releases lock:

| NCREMENT = (val ue. acquire
val .read[x: T] -> val . wite[x+1]->
val ue. rel ease -> TURNSTI LE)
+{val .read[T],val .wite[T]}.

© Wolfgang Emmerich, 1997 10

% Critical Sections in Java
—

Synchronised methods implement mutual
exclusion

Implicitly locking objects
class Counter {
| nt val ue_ =0;
oublic synchroni zed void increnent () {
Int tenp = value_ ; //read
Sinulate.interrupt();

++t enp; /[addl
val ue_=t enp; [Twite
} :
} Demo: Correct Ornamental Garden

© Wolfgang Emmerich, 1997

11

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/GardenB/Garden.html

% Synchronised Statements in Java

Locks on individual objects:

oublic void run() {
whi | e(true)
synchroni zed(peopl e) {
peopl e. i ncrenent ();
]

Less elegant than synchronized methods
More efficient than synchronized methods

© Wolfgang Emmerich, 1997 12

% Summary
e

Interference

Critical sections

Mutual Exclusion

Synchronised methods in Java
Synchronised statements in Java

© Wolfgang Emmerich, 1997

13

