UCL

C340 Concurrency:
Concurrency in Java

Wolfgang Emmerich
Mark Levene

© Wolfgang Emmerich, 1997

% Threads and OS Processes

e,

Process
Heap Code Context/
Attributes
Stack Stack Stack
(X X)
Context/ Context/ Context/
Attributes Attributeg Attributes
Threadq Thread? Threadn

m OS process provides protected address space.
B Many threads may execute within space.
m Each thread: stack & context (saved reg/sters)

© Wolfgang Emmerich, 1997

% Threads using Inheritance

e,

Thread class MyThread extends Thread {
run() public void run() {
}
MyThread Creation of thread:

MyThread t=new MyThread();

run()

© Wolfgang Emmerich, 1997

: Runnable < Thread I
' run() :

PN
class MyRun i npl enents Runnabl e {
public void run() {
MyRun
run())

Creation of thread:
Thread t=new Thread(new MyRun);

© Wolfgang Emmerich, 1997

% Thread Lifecycle

e,

m Started by start() which invokes run()

m Terminated when
e run() returns or
o explicitly terminated by stop().

m A started thread may be
e running or
 runnable (waiting to be scheduled)

m Thread gives up processor using yield().
m A thread may be suspended by suspend()
m /f Suspended gets runnable by resume().

m sleep() suspends for a given time and
then resumes

© Wolfgang Emmerich, 1997

ﬁ FSP Model of Java Thread Lifecycle

THREAD = CREATED,
CREATED = (start -> RUNN NG
[stop -> TERM NATED),

di spatch -> RUNNI NG

stop -> TERM NATED),

NON RUNNABLE = (resune ->RUNNABLE

[stop -> TERM NATED),

TERM NATED = STOP.

RUNNI NG = ({suspend, sl eep}-> NON_ RUNNABLE
[yield -> RUNNABLE
[{stop, end}! ->TERM NATED
[run -> RUNNI NG),
RUNNABLE= (suspend -> NON_ RUNNABLE
/
/

© Wolfgang Emmerich, 1997

% LTS of Java Thread Lifecycle

yield

suspend resume

sleep

0) °P (1 2) 3 4
end run suspend
stop

Key: stop

0: CREATED

1: TERMINATED stop

2: RUNNING

3: NON_RUNNABLE
4: RUNNABLE

© Wolfgang Emmerich, 1997

% Example: CountDown Timer

e,

B Demo: CountDown

m FSP of CountDown:
COUNTDOMWN (N=3) = COUNTDOWN[N],
COUNTDOMWN[1 : 0. . N] =
(when(i>0) tick->COUNTDOMNN[I - 1]
| when(i1==0) beep->STOP
).

© Wolfgang Emmerich, 1997

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/CountDown/CountDown.html

% CountDown Timer - Class diagram

Applet | . Runnable' Runnabl e is
t] ;
it ' run() an interface

start()
stop()

e

CountDown

start()

stop()
run()

paint()

© Wolfgang Emmerich, 1997

% CountDown Timer - Java class

e,

Import java.awt.*; //windows toolkit

Import java. applet *; /[applet support

public class CountDown extends Applet implements Runnable{
Int counter; Thread cd,;
public void start() { // create thread
counter = 60; cd = new Thread(this); cd.start();

public void stop() { cd = null;}
public void run() { /[executed by Thread
while (counter>0 && cd!=null) {
try{Thread.sleep(1000);}
catch (InterruptedException e){}
--counter; repaint(); /update screen

}
}
public void paint(Gaphics g) {
| f (counter>0)
g.drawString(String. val ue (counter), 25, 75) ;
else g.drawstring(“Bang”, 10, 50);

}
}

© Wolfgang Emmerich, 1997

% Concurrent Threads

e,

m Parallel composition operator | |

B /mplemented by creation of several new
thread objects

m | Example: ThreadDemo

m Creates two thread objects that execute
concurrently

© Wolfgang Emmerich, 1997 11

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/ThreadDemo/ThreadDemo.html

% FSP Spec of Thread Demo

e,

DI SPLAY THREAD = SUSPENDED,
SUSPENDED = (resune- >RUNNI NG),
RUNNI NG = (rotate->RUNN NG
| suspend- >SUSPENDED
).
| | THREAD DEMO =
(a: DI SPLAY _THREAD| | b: DI SPLAY THREAD) .

© Wolfgang Emmerich, 1997 12

% Class Diagram of ThreadDemo

e ————

Appletl

ThreadDemo

Init()
start()

stop()
destroy()

‘ Thread |
|

DisplayThread
suspendDisplay()
resumeDisplay()
rotate()

run()

action()

© Wolfgang Emmerich, 1997

GraphicCanvas |

13

% Summary

e,

m Threads vs. operating system processes

m Threads through class inheritance /
Interface implementation

m Thread lifecycle

m Concurrent threads by creating new
thread objects

m Class diagrams
m Next: Java Thread Programming Lab

© Wolfgang Emmerich, 1997 14

