Advanced Software Engineering D22 - 2003/04 UNIT 15: UML Extension Mechanisms ComputerScience Objectives: - Introducing UML Brief History of UML What does UML do Examples - Benefits of UML - Limitations of UML - UML Extension Mechanisms :: A solution to UML limitations · Mechanisms include: - Constraints - Stereotypes - Tagged values • Examples ComputerScience UML: Unified Modeling Language UML is a standard language to construct and document systems (software or non software systems) It is a set of modeling notations - Graphical: Shapes to construct diagrams - Textual: Syntax that tells how the shapes can be combined. • It is a modeling technique that combines Object Oriented methods and concepts. - Data abstraction :: Flexibility - Reuse :: Compatibility :: Extensibility UML enhances the analysis and design of software and non software projects by allowing more cohesive relationships between objects.

ComputerScience

- Since early 1990s: Many different design models and methodologies.
 →A de facto standard is needed.
- UML is the outcome in response to a request for a proposal from the **OMG**. (The Object Management Group produces and maintains computer industry specifications and software standards).
- 1994: Grady Booch (co-founder of Rational Software) and James Rumbaugh working together in a modeling technique.
- 1995: Ivar Jacobson joins them The Three Amigos.
- 1996: UML is born.
- January 1997: UML 1.0 is published and proposed to the OMG.
- November 1997: OMG adopts UML as the standard for Object Oriented modeling.
- Current version: UML 1.5
- UML 2.0 nearing completion.

ComputerScience

- UML helps visualise, and document models of systems or processes, including their structure and design, in a way that meets the requirements specifications.
- Helps stakeholders understand what the system will be and what are the possible options available.
- · It is language and platform independent.
- UML assembles the important aspects of a system while omitting the rest abstraction mechanism mapping of elements onto a Model.
- · Models are applicable to most domains:
 - Software :: Building, plumbing... :: Electrical, Mechanical Engineering.
 - Business processes :: Telecoms, Networks...

ComputerScience

- UML allows developers to quickly assemble programs from existing components and operations.
- · It defines a wide set of concepts and diagrams to communicate information effectively. These are applicable to most domains.

Display the boundary of a system	Illustrate the boundary of a system	Represent the static structure of a system	Model the behaviour of a system	Reveal the physical implementation architecture	Extend your functionality
Use Case Diagrams	Collaboration Diagrams Sequence Diagrams	Class Diagrams	State Transition Diagrams	Component Diagrams Deplament Diagrams	Stereotypes Packages

ComputerScience

Benefits of UML - UML supports the entire software project lifecycle. - Enhances the quality of software and non software systems. - Graphical representations of a design translate into actual source code (e.g Rational Rose → Java, C++, Ada) - It decreases costs of development and maintenance. - Helps risk management and team productivity. - It is supported by many vendors. - Promotes component based development. - Supports distributed processing systems modeling for modern and complex applications. - UML technology allows reverse engineering (e.g MS Visio will reverse C++, VB and J++ code into Class Diagrams)

- UML brings a set of notations and concepts that meet the needs of typical software modeling projects but some users have found UML unable to express their modeling needs. (non software systems)
- Flexibility should be added to construct and document more heterogeneous and complex systems.
- · UML lacks features that would allow to attach non-semantic information to models.
- Component models and architectural frameworks (JavaBeans, CORBA Component Model and COM+ cannot be modeled easily with UML.

ComputerScience

- Limitations are removed in UML by three built-in extension mechanisms that enable new kinds of modeling elements to be added.
- · These modeling elements can have distinct semantics.
- User defined User edits/adds the properties of a UML model.
- Used to define process-specific or to implementation languagespecific extensions.
 - Stereotypes
 - Constraints
 - Tagged Values

ComputerScience

UML model → Stereotype Stereotypes → May have Tagged Values and Constraints ComputerScience

UML Extension Mechanisms III Stereotypes A Stereotype is a UML model element that is used to classify other UML elements. A Stereotype may introduce additional Values, additional Constraints and a new Graphical representation. A Stereotype has semantic impact. Certain Stereotypes are already defined in UML. User defined Stereotypes share attributes and operations of their base classes. (See slide 11 – Static Model = base class)

