
1

Model Checking

Anastasia Semenova

Overview

• To introduce model checking and its purpose.

• Main approaches.

Systems need to be checked

• The impact of software systems on our lives is increasing.
– banks,
– phones,
– microwaves,
– hospitals,
– air traffic control
– etc.

• But how can you trust a system?

2

Or they fail

• We hear about so many failures of systems on the news,
some of which have fatal outcomes (e.g. NASA).

• But there are ways to make sure systems are sound.

So we have procedures for checking

• System simulation and testing
– If you have ever programmed it’s not unlikely that you have used

this technique.
– Widely used, testing is preformed on the product, where as

simulation is performed on an abstraction of the system.
– Though this is cost effective and catches many errors, there is no

guarantee that the system will not fail in some obscure condition

Another checking procedure

• Deductive Verification
– The system correctness is checked by using axioms and proofs for

verification.
– This is lengthy though complete.
– For that reason companies tend not to employ this procedure.

3

Model Checking

• “Model checking is an automatic technique for verifying
finite-state reactive systems” Clarke, Grumberg&Long

• Developed in ’80s independently by Clarke and Allen
Emerson and Quiele and Sifakis.

• Main advantage over other methods is that it is highly
automated

The basics

• Modelling and Specification: User provides a high
level representation of the system and the specification to
be checked.

• Verification: The model checker exhaustively explores
the problem space.

• And will terminate with true if it is so, or give a counter
example of execution if there is one. Very useful for finding
subtle errors

Why model checking?

• Cost effective
• Automated
• Does not aim for being fully general
• Algorithmic and of low computational complexity
• Still detects the errors
• Being adopted as a standard of quality assurance

procedure.

4

System Modeling

A system can be described as a tuple:
M = { S, I, A, _ }

(This is the minimal tupal, you can have larger ones.) where:
• S is the final set of states
• I is the initial set of states
• A, a subset of S*S, is the transition relation
• _ is a function that labels stages with the atomic propositions from a given

language.
 This tuple is more commonly know as a state transition graph or a Kirpike

structure.

Temporal Logic

 Using this to predicate over the state transition graphs we
obtain a structure that is like an infinite tree that gives us all
possible executions of the program.

Draw picture.

Temporal Logic cont.

• There are two ways of handling branching:
– LTL(linear Temporal Logic): operators describe properties of all

possible execution paths
– CTL(Computational Tree Logic): quantifies over paths from a give

state.

5

Remember Concurrency?

For those of you that did concurrency, or know it anyway
LTSA was a model checking tool. And LTS was a very
similar tuple structure to Transition Graphs.

Algorithms

The model checking problem:

Given a system M and a formula Q, does
M hold for Q?

There are two approaches

The local LTL approach:
• Approach comes naturally when the properties to be

checked are possible executions of the program
• Time complexity is exponential in term of formula, but

linear in size of the transition system.

6

The other approach

Global CTL and other branching time logics
• Suitable for checking structure of the program
• Polynomial in both the size of the modal determined by the

modal checker and in size of temporal logic specification
• (able to check graphs 104 to 105 states…not a lot)

CTL* and others

• CLT* is another type of branch-time logic, it combines
branch-time and linear time approaches,

– So it has the time complexity of the LTL algorithm

– Most alternative techniques are based on the use of automata for
the model specification and the implementation

Symbolic Model Checking

• The original model checking algorithm, together with the
new representation for transition relations is symbolic
model checking.
– Used explicit representation of Kripke Structure as a labelled

directed graph.
– Practical for small systems, with few states.
– As systems too complex it was realised that something new would

have to be added to model checking, because of the “state
explosion” problem.

7

Binary Decision Diagrams(OBDD)

• A major improvement was made on the regular techniques.
• This was the introduction of Ordered Binary Decision Diagrams.
• The behaviour of a reactive system could be determined by n

boolean state variables, the transition relation can be
determined by:

(v1,v2,…,vn, v’1,v’2,…,v’n)

Cont.

• Where v represents the current state and v’ represents the
next state.

• Now possible to model systems with 1030 states, systems
with 10100 states have also been successfully checked.

• The boolean formula was much more compact, the model
checking algorithm was now based on finding fixed points-
no need for a graph.

SMV

• As a part of a Phd of Mc Millan he developed a a new way
of checking:

• SMV extracts transition systems represented by a BDD
from a program that uses a BDD-based search algorithm to
determine weather a system satisfies it’s specification…

 if not, it will produce the trace proving the invalidity of the
specification.

8

Partial Order Reduction

• Algorithms based on the explicit state enumeration could
be improved only if a fraction of the reachable pairs needs
to be explored.

• Used in asynchronous systems composed of concurrent
processes with little interaction.

• The interleaved model, has all the actions of the individual
processes arranged in a linear order called interleaving
sequence.

• The full transition system considers all possible
interleavings of these sequences, resulting in an
enormously large state space.

• The algorithms are: Stubborn sets, Persistent sets, Ample
sets, Unfolding technique,Sleep sets.

Methods used for lager systems

• Partial order reduction is still only able to handle as many
states as a BDD, so other approaches:

• Abstraction
• Compositional reasoning
• Symmetry Reduction
• Induction

Summary

• Automatic approach to checking systems
• Used by big companies Intel, Fujitsu, IBM…
• The task of model checking is to assert systems, this task

is very delicate are lives depend on it.

