
Enterprise Application Integration Techniques
James Fenner

“: the combination of processes, software, standards, and hardware resulting in the
seamless integration of two or more enterprise systems allowing them to operate as

one.1”

The introduction of new technology is always met by resistance from the
exponents of current technology. However, “technology at this point is simply a
means to an end. What is really strategic is the use of the information and how we
exploit and maximize it.2” This means that before we can introduce Enterprise
Application Integration, we must justify its use. To do this, we will initially look at
why it is needed, starting with a brief history of the development of computer
systems. Once we have provided the justification for its use, we can then look at the
specific requirements for successful implementation. Then we examine the two
different integration architectures, point-to-point and middleware, and look at their
respective advantages and disadvantages. The next step is to look at the four common
integration methods, and what criteria are useful in choosing the appropriate one.
Then we look at examples of who actually uses this, and in what context. Finally, we
can examine the likely future for Enterprise Application Integration techniques.

A brief history
 For many thousands of years, man has used tools to help him carry out tasks.

Cavemen attached sharpened flints to wooden poles, enabling them to attack prey
from a distance. Modern man uses computers to help him carry out many tasks, from
shopping and banking to space exploration and medicine. The first computers were
primarily used to automate formerly manual tasks. These tasks were typically split
into small sections, much as you would find businesses split into departments. As the
system had been developed by or for a specific department, the system would often do
exactly the same as the manual steps used to, giving a very narrow scope. The
resultant system would generally be independent of others; there would be no
integration whatsoever: “There was no thought whatsoever given to the integration of
corporate data. The entire objective was to replicate manual procedures on the
computer.3”

These were known as “stovepipe” systems, giving us something like figure 1.4

Figure 1. Independent islands of computing4

This “islands of automation” model was abandoned gradually for three
reasons: 3

1. It became increasingly necessary to allow the systems to interact. This meant
the existing systems had to be integrated to provide interoperability – the scale
meant that you couldn’t simply start again!

2. The realisation that customer information within the stovepipe system had
massive value, particularly when viewed as a whole. For example, a software
vendor may have separate systems for home, business and government client,
and no way to obtaining a global view of the information.

3. The desire to integrate key systems with vendors and customers.

As integration became more and more important, systems would tend to look
more like figure 2. 3

Figure 2. The integrated enterprise3

This brings us (nearly) up to the present. In the last decade, packaged software
solutions became very popular. Software such as SAP, Oracle ERP, PeopleSoft,
JDEdwards, Siebel and Clarify would tend to work well individually, but again,
would create “information islands” as before, albeit on a larger scale. When common
data had to change, it had to be updated manually. For example, in a German bank,
clerical staff would read from one screen and type data into a user interface of another
application. This was slow, and generated many errors5. Also, “the further
proliferation of packaged applications, applications that addressed the potential
problems of the Year 2000, supply chain management/business-to-business (B2B)
integration, streamlined business processes, web application integration, and overall
technology advances6” meant that long term scalable solutions were required. These
solutions are called “Enterprise Application Integration” (EAI) techniques.

EAI Requirements
Now that the need for EAI has been recognised, we must continue by

explaining what EAI must involve in order to be a realistic solution. It must cover
every part of an enterprise system, including architecture, hardware, software and
processes.1

• Business Process Integration (BPI): It is fundamentally important for a
corporation to specify the processes involved in the exchange of enterprise
information. “This allows organizations to streamline operations, reduce costs and
improve responsiveness to customer demands7.” This can include process
management, process modelling, and workflow. Here, we involve the combination
of tasks, procedures, organizations, required input and output information, and
tools needed for each step in a business process. 1

• Application Integration: Here, the goal is to “bring data or a function from one
application together with that of another application that together provide near
real-time integration8.” This can include, business-to-business integration,
customer relationship management (CRM) systems which can be integrated with a
company's backend applications, web integration, and building web sites that
interact with multiple business systems.1

• Data Integration: If we want the above two integrations to succeed, we must also
integrate the data involved. Its location must be identified, recorded, and a
metadata model must be built (a master guide for various data stores). Now, data
can be shared or distributed across database systems, providing it is in a standard
format such as COM+/DCOM, CORBA, EDI, JavaRMI, and XML.1

• Platform Integration: Finally, the separate needs of the heterogeneous network
must be integrated. Platform Integration deals with the processes and tools that are
required to allow these systems to communicate, both optimally and securely, so
data can be passed through different applications without difficulty. For example,
finding how an Apple can pass data to a wireless palmtop is part of the entire
corporate system integration.1

These activities, as we have said, are essential if EAI is to replace the
unsatisfactory integration techniques that we have arrived at through time.

EAI Integration Architectures9

Within EAI, there exist two types of integration architecture:
• Direct point-to-point (PTP)
• Middleware-based

Point-to-Point
This is the basic, more traditional approach. It is used because it is easy and

quick, certainly viable for situations where we have few systems to integrate. For
example, a new web site may need to interface with an existing sales order system and
point-to-point integration may appear suitable. However, as you integrate additional
applications, you get a situation like that shown in Figure 3:10

Figure 3. The later stages of a point-to-point integration9

As this solution scales up, the infrastructure proves brittle. The tight coupling,
dependence, and number of integration points are all major disadvantages. The eight
applications shown in figure 3 are using a total of 12 integration points, all of which
need support. In theory, you could need up to double the number of integration points
compared to the number of applications, as shown in figure 4, where the five
applications need ten points of integration:8

Figure 4. Number of point-to-point connections8

If we want to avoid this, we need to provide an intermediate layer that can
isolate the changes between applications, effectively reducing the coupling. To do
this, we use middleware.

Middleware
As we have said, we need to provide something to mediate between

applications. By using middleware, we can provide generic interfaces, which allow
applications to pass messages to each other. Each of these interfaces defines a process
that the application provides. In figure 5, we can see a logical depiction of this
principle: 8

Figure 3. Middleware-based integration8

Now, our five applications only have five integration points, potentially
halving this cost. We can also add and replace applications in a manner that does not
affect other ones. The middleware itself can perform operations such as routing,
transforming, aggregating, separating, and converting on the data that is passed. Note
however, that there is additional complexity in terms of setting up the middleware,
and converting the applications to use the middleware APIs.

The Four Integration methods8

Once the logical EAI architecture has been selected, we can move onto the
actual integration method that is suitable to use. There are four common integration
methods:

• Data-level integration
• User interface (UI)-level integration
• Application-level integration
• Method-level integration

Data-level integration
Here, the backend data stores of the relevant application are integrated, and

can be either push or pull based. When using push based, one application makes SQL
calls on another application’s database tables. This is through database links or stored
procedures, and data is pushed into another application’s database. However, pull
based integration uses triggers and polling. The triggers capture changes to data and
write the identifying information to interface tables. It is then possible for adaptors to
poll the application’s interface tables and retrieve the pertinent data. This pull based
integration is used when an application requires passive notification of changes within
another application’s data.

When the application that needs to be integrated does not provide any APIs or
client interfaces, you would use data-level integration. You must also have a good
understanding of the business operations that may affect the application’s data model.
It is typically the only option with most custom applications that lack APIs.

User Interface-level integration
This ties integration logic to user interface code, and can be either scripting or proxy
based. When using scripting based, the integration code is embedded into the user

interface component events, common with client/server applications such as
PowerBuilder or Vantive.

In cases where direct access to the database is not easy or possible, or when
the business logic is embedded in the user interface, this is the correct integration
method to use. Mainframe and client/server applications are often good candidates for
this. Mainframes do not tend to have access to friendly data stores, and do not provide
public APIs. However, user interface level integration is generally used as a last
resort. If you add scripting logic to catch events with client/server applications they
become very difficult to maintain, as integration levels increase and more changes
occur. User interface changes can break integration triggers and logic anyway. This
tight coupling creates a permanent link between the maintenance of the user interface
and the integration code.

Application-level integration
This is considered the best way forward for application integration, and it uses

the integrated application’s integration frameworks and APIs. It is good to use, since
it is transparent to the integrated application and it preserves the application’s data
integrity. The application interface allows you to invoke business logic to preserve
data integrity. Integration API examples include Siebel's Java DataBeans and SAP's
JCA (J2EE Connector Architecture).

Method-level integration
This is less frequently used specialisation of the application level integration method
shown above. Here, we aggregate common operations on multiple applications into a
single application that fronts the integrated applications. It is generally used when
each integrated application has a similar set of API or functional methods. The
integrated applications must support a Remote Procedure Call (RPC) or distributed
component technology. The main disadvantage to this approach is again the tight
application coupling in front components. They will break when changes are made to
the integrated application API, and these problems will propagate down to the other
applications that rely on them. This is used when we have distributed component or
CORBA technology.

How to choose an integration method? 8

This is really an exercise in constraint-based modelling. You must look at each
system and define the possible interfaces into that application. In some cases, the
application does not have any API; therefore the backend data store represents the
only option. In other cases, APIs and a CORBA infrastructure may exist; so employ
application-level integration. 8

But who uses this?
It’s all very well having a well-defined integration system, but without the

backing of major industry, these techniques will soon disappear. Fortunately there
exists a massive backbone in the large multi-national companies to support
development of EAI. Market leaders include BEA Systems, CrossWorlds Software,
IONA Technologies, Level 8 Systems, Mercator Software, NEON (purchased in 2001
by Sybase), SeeBeyond, Software AG, TIBCO, Vitria Technology, and webMethods.
Market-leading large system integration firms include IBM Global Services,

Accenture, PricewaterhouseCoopers, CSC, and EDS1. So, we really do have large
current support for the use of EAI.

For an example of the type of work a typical EAI company might do, see table
1 below11:
Project Name Description and Technologies
Business Support System for
Russian Government Agency

April 2001 - December 2002
(planned)

The project is covered by a NDA so only a general description can be provided. The main
contractor is one of the world's largest IT companies. Digital Design is developing the software
part of the solution worth almost 1 million USD. The system is integrated with a standard
industrial document management system, a search engine, and an Oracle database.

International Paper

August 2001 - December 2001

Order-tracking system for client support personnel and company management. The system is
integrated with Scala ERP, Prodis (production control system) and TPC (Transportation
Process Control system). Main functionality is to provide information about order placement,
production, stock availability, credit control, transportation and customer claims. The system is
being used in the production environment serving a large number of International Paper's
clients' requests.

Electronic Mail System for Russian
Ministry of Railways

August 2001 - June 2002

The client used to have independent IT policies in its 22 subsidiary companies. Digital Design
developed a number of applications providing connectivity between different messaging
platforms and catalogues. The system is being used by 50,000 users in 11 time zones. On top of
this messaging system, Digital Design rolled out HP Open View Operations to manage both the
client's corporate network and the Electronic Mail System from a single centralized location.
This was done using SOAP, a leading edge technology which provides many advantages, such
as seamless integration of various applications over the Internet.

Table 1. Use of EAI in Industry11

What for the future?
EAI is still a maturing technology, but seems to have a brilliant future. Why?

To put it simply “It's the economy, stupid.12” The EAI market is set to become the
most important and fastest growing IT sector in the next three to five years.
Apparently, “worldwide revenues in this market will jump from $5 billion in 2000 to
nearly $21 billion in 2005. This increase represents a strong compound annual growth
rate (CAGR) of over 30%. By comparison, the corresponding opportunity of the
overall IT services industry will increase at a CAGR of 11% during the same
period.13” This growth will also be primarily felt in this part of the world “North
America and Western Europe will generate more than 90% of the demand for global
EAI services through 2005, with Japan and Latin America driving the remainder of
this service demand.12” It is not therefore surprising that so many major companies
are involved as we have previously seen. However, there are factors that may slow the
predicted growth, which are the “cost of services, human issues regarding EAI
engagements, and business-to-business integration challenges.12”

But what does this all mean for a modern company? Vendors will emerge to
lead the market, vendors who have accumulated additional layers of application
content knowledge. Rather than just using a propriety tool, they will be able to choose
from “a toolbox of possible technologies1”, each of which will be particularly suited
to whatever the current project may be. They will be able to offer economical
integration services, more economical than those available to us now. This will be
partly because they can avoid costly trial and error testing, due to their familiarity
with the capabilities and limitations of the products, and as they can leverage their
investment in application knowledge and process development. They will also
understand the most important questions to ask customers about their software
product, and this enhanced relationship will allow them to provide more economical,
reliable maintenance and support of evolving customer integration requirements1.” It
is therefore clear that although there are massive financial possibilities to be
exploited, there is much work required to achieve the previously stated goals.

Conclusion
So, we have seen that EAI is an important tool for any company in the IT

industry. We have looked at its roots, and why it has been developed, and this has led
us to define criteria for successful integration. We then moved onto the EAI
integration architectures, and then examined the integration methods. Then we looked
at the use of EAI in industry and the future it holds. It certainly seems that the
importance can only grow.

1 EAI.ITtoolbox.com
2 CIO magazine 1st July 2002, former Wal-Mart CIO Kevin Turner
3 William Inmon, "A Brief History of Integration." EAI Journal.
4 XML and Java, Todd Sundsted
5 Emmerich, Tigra
6 John P. Desmond and Ed Acly, "Beating the Integration Blues." Software Magazine.
 September 1999.
7 Andre Yee, "Demystifying Business Process Integration." EaiQ.
8 www.gartner.com
9 EAI using J2EE, Abraham Kang
10 Anonymous CITL Consultant
11 Digital Designs UK Ltd
12 1992 US Democratic campaign slogan
13 IDC, "The EAI Market Simmers with Robust Growth Expectations." February 28, 2001.

