
1

1© Chris Davis, 2002

Distributed Objects and
Components

by

Chris Davis

2© Chris Davis, 2002

Who am I?

• 4th Year undergraduate

• MSci Computer Science

• You can contact me at:

c.davis@cs.ucl.ac.uk

3© Chris Davis, 2002

Outline

• Motivation

• Objects and components

• Middleware technologies:

– COM

– CORBA

– J2EE

• In-depth: J2EE and Enterprise Java Beans

4© Chris Davis, 2002

Motivation

• Main programming languages do not support
distributed system construction well

• Local component models do not support
interaction across machine boundaries

• Heterogeneity of programming languages

5© Chris Davis, 2002

Objects

“has state, behavior, and identity; the structure and
behavior of similar objects are defined in their
common class”

(Booch, 1994)

“represents an individual, identifiable item, unit, or
entity, either real or abstract, with a well-defined role
in the problem domain”

(Smith and Tockey)

“a concept, abstraction or thing with crisp boundaries
and meaning for the problem at hand”

(Rumbaugh, 1991)

6© Chris Davis, 2002

Components

“A self-contained entity that exports
functionality to its environment and may also
import functionality from its environment
using well-defined and open interfaces”

(Stal, 1998)

2

7© Chris Davis, 2002

Distributed Components

• Distributed Components:

– Utilise communication middleware

– May exist on separate hosts

– Across a heterogeneous network

– Legacy assets may be leveraged

– Components interoperate as a unified whole

“The Network is the Computer”
(Sun Microsystems)

8© Chris Davis, 2002

Objects and Components

• Objects
– Isolated, centrally located

• Distributed Objects
– Calls between applications

– Management and performance issues with small
remote objects

• Distributed Systems
– Multi-tier systems, point-to-point connectivity

– Expensive and hard to develop

• Distributed Components
– Framework for pluggable components

M
o
r
e
 a
d
v
a
n
c
e
d

9© Chris Davis, 2002

Any Questions?

Any Questions?

10© Chris Davis, 2002

Middleware

• Layer between components

• Provides transparent distribution

• Resolves heterogeneity of:

– Hardware

– Operating Systems

– Programming Languages

11© Chris Davis, 2002

Middleware (2)

• Transaction-Oriented:

– BEA Tuxedo

• Message-Oriented:

– IBM MQSeries

• RPC Systems:

– Sun RPC

• Object-Oriented:
– CORBA

– DCOM

– J2EE

12© Chris Davis, 2002

CORBA – Overview

• Support distributed and heterogeneous object
requests

• Transparent to users and programmers

• Facilitate integration of new components into
legacy systems

• Defined by OMG

• Open standard

• Used extensively in industry

3

13© Chris Davis, 2002

CORBA – Architecture

14© Chris Davis, 2002

CORBA – Architecture (2)

• Application Interfaces

– Developed specifically for a given application

• Domain Interfaces

– Interfaces for services for specific domains

• Common Facilities

– Services targeted to application

• Object Request Brokers
– communicates requests to object implementations

• Object Services

– Naming, trading services etc.

15© Chris Davis, 2002

CORBA – IDL

• Defines interface to components

• Language-independent

• Compiler generates:

– Stubs (client)

– Skeletons (server)

• Stubs and skeletons:

– Perform marshalling and un-marshalling

– Resolve heterogeneity between platforms

16© Chris Davis, 2002

DCOM – Overview

• Distributed Component Object Model

• Components can be developed:

– Without need to recompile clients when servers are
changed

– In different environments and languages

• Developed by Microsoft

• Interfaces expressed in Microsoft IDL

• Object implementations in bound language

17© Chris Davis, 2002

DCOM – Microsoft IDL

• Contains description of interface between the
client and the server programs

• Based on the syntax of the C programming
language

• Multiple programming language bindings are
available:

– MS Visual Basic

– MS Visual C++

– MS Visual J++

– and others…

18© Chris Davis, 2002

J2EE – Overview

• Java 2 Enterprise Edition

• Multi-tier architecture

• Developed by Sun

• J2EE Components:

– A self-contained functional software unit

– Are assembled into a J2EE application with
related classes

– Communicates with other components

4

19© Chris Davis, 2002

J2EE – n-Tier Architecture

Source: Sun Microsystems, J2EE Tutorial

20© Chris Davis, 2002

J2EE – n-Tier Architecture (2)

• Client Tier:

– Web browser based or client application

• Web Tier:

– JSP/Servlets or Direct communication

• Business Tier:

– Consists of beans (session, entity, message)

– Business logic located in reusable components

• Enterprise Information System Tier:
– database systems

– enterprise resource planning (ERP)

– transaction processing

21© Chris Davis, 2002

J2EE - Beans

22© Chris Davis, 2002

J2EE – EJB

• Enterprise Java Beans:

– Provide Business Logic

– Exist in middle tier between clients and EIS Tier

– Consist of Java classes

– Use RMI or JMS for communication

– EJB Containers control component execution

– Standardizes the development and deployment of
server components built in Java

23© Chris Davis, 2002

J2EE – EJB Session Beans

• Represents single interactive session

• Transient

• Stateful:

– Hold conversational state

– One for each client

• Or Stateless:

– No state held outside calls

– Beans may be pooled and reused

24© Chris Davis, 2002

J2EE – EJB Session Beans – Examples

• Stateless session EJBs:

– an EJB that calculates sin(x)

– an EJB that validates a stock symbol x

• Stateful session EJBs:

– an EJB that books a flight from a form on a
website

– an EJB that orders spare parts for a car as part of
an application

5

25© Chris Davis, 2002

J2EE – EJB Entity Beans

• In-memory copy of persistent data
• Represent data
• Persistent

– Saved to stable when server shuts down

• Allow shared access
– Multiple clients may read values and update entity

beans

• Primary Key
– ID to enables client to find a specific entity bean

• Relationships
– May be associated with other entity beans

26© Chris Davis, 2002

J2EE – EJB Entity Beans – Examples

• an EJB that represents a stock’s historic prices

• an EJB that represents a genome sequence

• an EJB that represents a footballer player’s
career statistics

• an EJB that contains your personal profile on
a web site

27© Chris Davis, 2002

J2EE – EJB Message Beans

• Session beans and entity beans can send JMS
messages synchronously

• Stateless

• Asynchronous JMS message consumers

• Uses non-blocking primitive

• Avoid tying up server resources

• Java Message Service

– Reliable, asynchronous inter-component
communication

28© Chris Davis, 2002

J2EE – EJB Interfaces

29© Chris Davis, 2002

J2EE – EJB Interfaces (2)

• Two interfaces clients can use:

– Home interface

Used by clients to create & remove bean

Provides meta information

Shared among all clients

– Remote interface

Contains business operations

30© Chris Davis, 2002

J2EE – EJB Application Servers

6

31© Chris Davis, 2002

J2EE – EJB Containers

• Manages execution of Enterprise Java Beans

• Interface between component and system

• Provide facilities to components:

– Transaction management

– Database connection management

– Security & authentication

– Remote connectivity

– Scalability

– Persistence

32© Chris Davis, 2002

Any Questions?

Any Questions?

33© Chris Davis, 2002

Summary

• Distributed Components offer many
advantages

• CORBA, DCOM and J2EE are in wide use in
industry

• CORBA and DCOM have many different
language bindings

• EJBs provide easy development, deployment
and management of applications

• EJB Containers provide many important
facilities for component operation

34© Chris Davis, 2002

References

• Engineering Distributed Objects
Emmerich, W: Wiley and Sons, 2000

• Distributed Systems: Concepts and Design, 3rd Ed
Coulouris; Dollimore; Kindberg: Addison Wesley, 2001

• The J2EE Tutorial
http://java.sun.com/j2ee/tutorial/

• Objects and Components
http://www.cetus-links.org

35© Chris Davis, 2002

References (2)

• Your J2EE Community:
http://www.theserverside.com

• O’Reilly J2EE/Java Community:

http://www.onjava.com

