
1

The UWA Approach to Modeling Ubiquitous Web Applications

UWA Consortium
Piazza del Carmine,22 – 09100 Cagliari (Italy)

gab@acm.org

ABSTRACT

Web applications have already evolved from “static”
sites to completely distributed applications; nowadays
they are facing a new transformation and are becoming
ubiquitous systems that are available anytime, any-
where, and with any media.
This new requirement led the UWA Consortium to pro-
pose a special purpose design approach to modeling
Web applications. This paper introduces the approach
and sketches the main design steps.

I. INTRODUCTION

Web applications have already evolved to distributed
systems that exploit the Internet as communication
means and the Web as interface to access services and
data ([2]). Nowadays, they are facing a new transforma-
tion to supply users with ubiquitous systems that are
available anytime, anywhere, and with any media ([10]).
These new applications supply the user with both data
and services, are multi-channel, that is, available on a
variety of devices, and are used by several classes of
users, with different needs and expertise. Even if most
of the features of these applications are not new, their
combination implies a new multi-aspect modeling approach
that cannot be obtained by just piling up existing methodolo-
gies, tools and techniques. Given this belief, the UWA con-
sortium1 started working on the special-purpose modeling
methodology that is presented in this paper.
The overall modeling problem is partitioned in the fol-
lowing design aspects:
• Requirements elicitation to define what the appli-

cation should do;
• Hypermedia Design to model data, and how they

can be navigated and presented, and operations
(services) as available to the user;

• Transaction Design to model the transactions made
available by the application;

• Customization Design to specify how the application
should adapt itself to the context, and, in particular to the
user, device, communication channels, time and location.

Each modeling activity is defined in terms of a meta-
model, which captures the set of relevant concepts and
the primitives, a notation, based on UML ([6]) to repre-
sent the concepts, a set of guidelines and heuristics, to
help the designer exploit the concepts and understand
the trade-off among the different design solutions, and a
set of tools, to enact the design process and enforce co-

1 The UWA consortium comprises: Atlantis SpA (Italy), Banca 121
(Italy), Fundacion Robotiker (Spain), Politecnico di Milano (Italy),
Punto Comercial (Spain), University of Linz (Austria), Technical
University of Crete (Greece), Siemens AG (Austria), Università della
Svizzera Italiana (Switzerland), and University College London
(United Kingodm).

herence and consistency of design. Unfortunately, in
this paper space limits oblige us to simply introduce
each modeling aspect. Interested readers can refer to [8]
for an in-depth presentation.
The UWA project provides a unified framework, which
integrates the various metamodels and notations and
highlights their mutual interdependence, and a unified
software environment, based on Rational Rose, that inte-
grates the tools specific to each modeling activity.

The rest of this paper presents each modeling phase in detail:
each section introduces the main concepts design heuristics.
The last section concludes the paper and introduces the future
work.

II. REQUIREMENTS ELICITATION

In UWA, requirements elicitation/specification is based
on goal-oriented requirements engineering. The key
achievement of this approach, first introduced by Yue
[9] and van Lamsweerde [3], is that it makes explicit the
why of requirements.
Van Lamsweerde’s goal-oriented requirements engi-
neering approach (often referred to in the literature as
KAOS) provides for three levels of modelling:
§ The meta level, that refers to domain-independent

abstractions. This model contains concepts such as
goal, requirement, object, entity, and so on;

§ The base level, containing domain-dependent con-
cepts, such as service, telephone, bandwidth, etc.
The structure of the meta-level model constitutes a
meta-level guide on how to conduct a requirements
engineering activity;

§ The instance level, containing specific instances of
the domain-level concepts.

According to our approach, requirements specification
means the identification of the following elements:
A stakeholder is someone or something that has an
interest in the system. This definition is purposely very
vague because a stakeholder is an extremely generic
concept. Almost anyone can be a stakeholder. Examples
include end users, developers, buyers, managers (i.e.,
people who will not use the system but who manage
people who do). These stakeholders are very important
but too often neglected in the requirements engineering
process.
A goal is a high-level, long-term objective that one or
more stakeholders own. This marks an important differ-
ence with respect to “traditional” goal-oriented require-
ments engineering, in which goals are system goals. In
our approach, on the contrary, a goal may be owned by
a variety of stakeholders. In other words, given the na-
ture of the applications at play, a user-centred approach
is employed. It means that the centre of the world is no
longer the system, but rather the stakeholders of the

2

system. A goal may be owned by an arbitrary number of
stakeholders but must be owned by at least one. In fact,
a goal that interests no-one is a non-goal, and should
therefore be removed.
Finally, a goal delivers a certain value to its
stakeholders. The actual value delivered represents the
why of the ownership, and is strictly dependent on both
the goal and the stakeholder. The value is extremely
hard (and probably impossible in the general case) to
formalise. Therefore, it is usually expressed in free-text
form. It is an arbitrary quantity that cannot be taken as
an absolute measure. It is nonetheless very useful for
establishing importance and priority of goals.
High-level goals represent the ultimate desires of
stakeholders. However, for them to be of use, they have
to be refined into lower-level goals. This refinement
process is extremely useful because a high-level goal
per se does not say much to the designer. It is too ab-
stract, too high-level and too long-term to be fed di-
rectly to Web designers. In addition, refining the goals
into subgoals is invaluable for eliciting new require-
ments, and assessing existing ones. According to our
experience, it is often very hard to understand what the
real goal of the customer is. Therefore, quite often dur-
ing the refinement process one realises that a goal they
had previously stated is actually not a goal of theirs, but
probably of some other stakeholder, or probably that’s
not a goal at all, in that nobody is interested in that.
Finally, refining a goal into subgoals helps identify con-
flicts . A conflict is a relation between two
goals/requirements and basically means that the two
cannot be fulfilled together. A conflict must therefore be
solved or the designers will not know what to do. A
conflict must be solved as soon as possible, and in any
case before the operationalization step, i.e., before any
of the goals involved in the conflict is turned into actual,
low-level requirements.
The leaves of the derivation graph are the require-
ments. A requirement represents the operationalization
of a goal. This means that a requirement turns one or
more goals into a concrete specification that a designer
can read and apply. Actually, the definition of require-
ment is quite blurry. In particular, it is not always
straightforward to decide when a goal remains such and
when it can be operationalized into a requirement. What
really is a requirement depends a lot on the context at
play, on the particular application being developed
within that context, on the requirements engineer, on the
domain expert, and on countless other factors. Since it
turned out to be clearly impossible to come up with a
formal, general rule for telling requirements from goals,
we defined a heuristic of refinement principles.
Requirements are categorised into dimensions . As al-
ready stated above, this is the first case in the literature
in which the goal-oriented approach is applied to inter-
active systems and Web-based applications, and thus a
novel requirement categorisation scheme had to be in-
vented. The dimensions presently comprised in the
metamodel are:
§ Content. It is the core value of a Web application. It

refers to that set of ideas and messages that the site
communicates to its users. Ideas and messages are

mainly specified in terms of the core information
objects available.

• Structure of content. Requirements can also give
coarse-grain insight about how the information ob-
jects identified are structured. By “structure” we
mean the organisation of content within the same
information object.

§ Access. This dimension refers to the navigational
paths available to the user to reach the needed con-
tent.

§ Navigation. Requirements can suggest to connect
different information objects allowing the user to
navigate from one piece of content to another.

§ Presentation. Requirements can also give guidelines
for defining the visual communication strategies for
presenting content, navigational capabilities, and
operation to the user.

§ User operation. User operations are those opera-
tions that are visible to users. They are the only op-
erations the users must be aware of.

§ System operation. System operations are those op-
erations that are not visible to users, but become
mandatory to “build” user operations.

A requirement belongs to exactly one dimension.
Actually, this restriction can also be seen as a necessary
(although certainly not sufficient) condition for a
requirement to be considered such: if a requirement
cannot be easily and clearly assigned to exactly one
dimension, then it is too general to be called a
requirement (and is therefore still a goal). Again, the
number and nature of dimensions is not fixed a-priori,
but new ones can be added at will and at any time.
Requirements also have an associated priority.
Prioritising requirements becomes necessary (or at least
very desirable) in any realistic software engineering
methodology. There comes a time, in fact, when a
designer realises that he simply cannot implement all of
the requirements at the same time or in the same
version. As a matter of the fact, constraints on time,
budget, or other resources can severely limit the amount
of requirements that can actually be realised.
Finally, an Assumption represents some entity, event,
or other piece of information that belongs to the world
and that we have to come to terms with when refining
goals into subgoals and eventually into requirements.

III. HYPERMEDIA DESIGN

Hypermedia aspects in UWA are dealt with by suitably
tailoring W2000 ([1]), whose main concepts are organ-
ized in three main models:

The Information model specifies the concepts for spe-
cifying the content available to the user (Hyperbase) and
how it can be accessed (Access structures).
The key element is the Entity: It renders data of interest
to the user as if they were conceptual objects. An entity
resembles the concept of a class and, as classes, it can
be the root of a generalization hierarchy. An entity is
organized in semantic sub-units, called Components ,
which are pure organizational devices for grouping the
contents of an entity into meaningful chunks. The result
of this definition is a tree of components, based on the

3

part-of relationship. Components can further be
decomposed in sub-components, but the actual contents
can be associated with leaf components only. The
contents of leaf components is defined in terms of Slots ,
i.e., the attributes that define the primitive information
elements. A Segment groups slots to supply
information chunks as ``consumed'' by the user.
A Semantic Association connects two entities with a
double meaning: it both creates the ``infrastructure'' for
a possible navigation path (by connecting a source to a
target) and has proper, local, information, called
Association Center, which contains data that define
and specify the association itself and provides additional
information on how to represent both the single target
elements, in a concise way, and the whole group of
target elements that relate to the same source. . Entities
can also be grouped in Collections that are organized
sets of information objects. A collection provides the
user with a way to explore the information contents of
the application and, thus, is the key concept as to access
structures.

The Navigation model specifies the concepts that allow
the designer to reorganize the information for
navigational purposes. He should ``reuse'' the elements
in the previous model to specify the actual information
chunks together with the relationships among them.
The information contents is organized in atomic units,
called Nodes: They do not define new contents, but
either come from entity components, semantic
association, and collection centers, or are added only for
navigation purposes (e.g., to introduce fine-grained
navigation steps). In the former case, they contains the
slots associated with the information element they
renders. In the latter case, they are simple empty nodes.
Two nodes are linked through a directed Accessibility
Relationship to specify that the user can navigate from
the source to the target node.
Nodes exist in the context of a Navigation Cluster that
groups nodes and accessibility relationships to foster
and facilitate the navigation among data (nodes).
Clusters can be nested and can further be characterized
according to the kind of information they render.
Structural Clusters consist of all the nodes derived
from the components of entities, Semantic Clusters
comprise all the nodes that come from source, target and
centers of semantic associations, and Collection
Clusters comprise all the nodes that come from the
members and centers of collections.

The Presentation model specifies the concepts to make
the designer specify how the contents is published in
pages and how users are supposed to reach data within
the same page or across different pages. Presentation
Units are the smallest granules at presentation level.
They can either come from nodes or add new contents
that is defined only at presentation level for
aesthetic/communication purposes. A Section is a set of
presentation units derived from nodes that belong to the
same navigation cluster. A Page is a grouping of
sections, which could also be non-semantically related,
from which it inherits links and navigation features.
Presentation units, sections, and pages can all be sources

or targets of Presentation Links, that is, a connection
between two presentation elements to enable the
navigation between them. According to the
aforementioned concepts, we can further classify the
links in a page as: Focus Links to remain in the same
page, but moving the page focus from a unit to another,
Intra-page Links to navigate between instances of the
same page type, and Page Links to navigate between
instances of different page types.

One of the main differences of Web applications, with
respect to more traditional Web sites, is the possibility
of invoking special-purpose operations (services) while
browsing the site. Operations can change the hyperme-
dia and business states of the application, but they can
also impact on the underlying system, control or be
controlled by external elements (e.g., an S.M.S. server),
and be either explicitly triggered by users or implicitly
invoked in particular situations. In UWA, designers can
add:
• Simple Operations, which are atomic (with respect

to their execution) computational steps that can be
invoked by the user, or could be part of activities. A
simple operation must be considered a black-box
component with respect to the user's point of view.

• Multi-step Operations, which preserve their essence
of being atomic, but are not black-box anymore. A
multi-step operation is constrained on its borders
only, but suitable scenarios can be defined to
explain the different steps through which the
execution evolves.

• Activities, which are not atomic anymore. They can
be seen as business transactions or/and containers
for operations (both simple and multi-step ones).
Activities identify sets of operations to which
different behavioral semantics can be associated.
For example, either the whole activity is seen as an
atomic transaction, or other more sophisticated
transactional properties could be associated with
the activity to better control the effects of its
execution.

IV. TRANSACTION DESIGN

Transactions in web applications are critical for
businesses. Web transactions can be complex, the may
be composed of several sub-transactions, they may be
accessing many different resources including existing
legacy systems and they may have complex semantics.
To deal with such complex applications, web transac-
tion design needs to be very flexible allowing both de-
veloping web applications from scratch by decomposing
user level goals into sub-goals that exhibit transactional
behavior (top-down design), as well as using already
existing systems or services to compose new applica-
tions offering added value services (bottom-up design).

Transaction models that provide for transactions with
complex internal structure are known as extended trans-
action models (ETM) and up to now several different
such models have been proposed (sagas, nested, open
nested, etc). Some recent web standards have adopted
and new proposals are continuously appearing. Al-

4

though the ETMs are valuable in many application do-
mains relaxing some of the ACID transactional proper-
ties, they can’t always deal with the full complexity that
some modern ubiquitous web applications have. Their
limitations come mainly form their inflexibility to in-
corporate different transactional semantics in one
(structured) transaction or to describe different behav-
ioral patterns for different parts of the same transaction.

Our objective is to facilitate the complex design proc-
ess for web transactions by providing a standard meth-
odology based on extensions of UML for designing
complex web transactions In particular out objectives
are to:

1. Provide a formal, high-level design methodology,
which will give to the transaction designer the
ability to design both the static structure of trans-
actions and their dynamic behavior. Designing
both structure and execution flow of transactions
makes their implementation easier and their
specification well understood.

2. Provide a very rich model for designing transac-
tions compatible to all known transaction models.

3. Provide for designing transaction models for
scratch. As new models may be needed according
to the application’s requirements the ability to de-
fine new transaction models becomes very im-
portant.

4. Provide for describing different transaction de-
composition semantics and behavior in the same
transaction. This is very important for applica-
tions that access resources with different inter-
faces, behavior and semantics. With this ability
the same transaction can access different re-
sources and utilize existing legacy systems or
services adapting to their behavior.

5. Provide for modeling activities with weaker
transactional semantic that they do not have all
the ACID properties.

To achieve the above objectives we propose a set of
concepts that can be used from a designer to describe
transactional behaviors according to the application’s
requirements and complexity. We opted a meta-model
because if we were providing a new, specific, transac-
tion model we would deal with only one dimension of
web applications’ complexity. All known transaction
models try to describe behaviors from a specific point of
view. Some provide for relaxing atomicity, other for
relaxing consistency and so on. According to the objec-
tive that a transaction model has, it provides a mecha-
nism for achieving this objective. However, modern
web applications have requirements that include the
achievement of many diverse goals at the same time.
Thus providing a flexible formalized and comprehen-
sive meta-model we provide the appropriate mechanism
for designing such complex transactional applications.
The transactional meta-model has been described in
UML providing a useful extension of an industrial stan-
dard design methodology. The main contributions of
this meta-model are the following:

• It provides description for both structural and
execution dependencies of transactions.

• It provides detailed specification of transaction
decomposition semantics not for the whole model

necessarily, but for each transaction node inde-
pendently. This is important since it allows for
incorporating behavior of different transaction
models into the same transaction.

• It distinguishes between management operations
and functional operations that a transaction has
giving the ability to specify its behavior.

• It provides for designing transactions with exe-
cution contracts weaker than ACID integrating
diverse resources like legacy systems. Moreover,
it formalizes the decomposition of such transac-
tions and the propagation of these properties in
sub-transactions.

• It introduces the concept of well-formedness
rules that are based on well-described concepts
and are used to describe intra and inter-
transaction dependencies. Well-formedness rules
and management operations compose the exten-
sibility mechanism of the meta-model enabling
for describing application-specific transactional
behaviors.

• It uses finite state machines to describe transac-
tion execution flows and run time execution de-
pendencies between transactions.

• It provides an extend UML based notation, with
appropriate stereotypes, that is used to visualize
and document the transaction design.

V. CUSTOMIZATION DESIGN

The approach to customization design is based on a
broad view on customization [4]. Although most often
separated in existing approaches [5], we think that cus-
tomization for ubiquitous web applications should uni-
formly consider personalization aspects, together with
issues resulting from being ubiquitous, thus supporting
the anytime/anywhere/anymedia paradigm.
In our opinion, the design space of customization com-
prises the two orthogonal dimensions context and ad-
aptation . The context dimension comprises the circum-
stances of consumption of a ubiquitous web application
mainly dealing with the question “why to customize and
when”. In this respect, we define context as the reifica-
tion of certain properties, describing the environment of
the application and some aspects of the application it-
self, which are necessary to determine the need for cus-
tomization. The adaptation dimension mainly refers to
the questions which changes to make as well as what to
change. Customization is seen, in turn, as a combination
between a certain context and certain adaptation, thus
adapting the ubiquitous web application towards a cer-
tain context. In particular, customization is regarded as a
new dimension, influencing all other tasks of ubiquitous
web application design as described in the previous sec-
tions.
For designing the customization, we propose a generic
customization model in the sense of an object-oriented
framework, which provides the customization designer
with appropriate model elements for specifying both
context and adaptation. Generic means that the model is
application independent and provides some pre-defined
classes and language constructs in order to model appli-
cation dependent customization. In addition, the pre-

5

defined classes can be extended by the customization
designer through sub-classing in order to cope with ap-
plication specific details.
To support the context dimension, we define a physical
context model , comprising a set of pre-defined context
classes, holding actual, historical and future information
about the environment of the application and the appli-
cation itself, e.g. the device used, the user accessing the
web application. Second, there is a logical context
model, which contains a set of pre-defined profile
classes for providing more abstract and static informa-
tion about the context, e.g., descriptions of the proper-
ties of a certain device, user profile information. Third,
the customization rule model allows to specify certain
customizations. The adaptation desired towards a cer-
tain context is specified in terms of customization rules
which are specified within UML annotations attached to
those model elements being subject to customization.
The customization rule model again provides a set of
sub models in terms of an event model, a condition
model and an action model. The event model specifies a
set of pre-defined events, responsible for determining
potential violations of certain requirements due to
changes in context. The condition model provides logi-
cal expressions using OCL syntax and allows to specify
predicates on the context model. The action model, fi-
nally, defines the syntax for certain adaptations and
provides a set of adaptation operations. These adapta-
tion operations are generic and pre-defined for each
model element being part of information design, navi-
gation design, presentation design, and operations de-
sign. In addition to these generic adaptation operations,
additional application-specific adaptation operations can
be defined by the customization designer.

VI. CONCLUSIONS AND FUTURE WORK

The paper presents the UWA approach to modeling
ubiquitous Web applications. Space limits obliged us
just to sketch the methodology, but interested readers
can refer to [7] for all details about the project.
As future work, we are about to start the implementation
of the supporting tools and use special-purpose case

studies to assess and evaluate the soundness of the
approach.

REFERENCES

[1] L. Baresi, F. Garzotto, and P. Paolini. Extending UML
for Modeling Web Applications. In Proceedings of 34th
Annual Hawaii International Conference on System Sci-
ences (HICSS-34) . IEEE Computer Society, 2001.

[2] G. Booch. The Architecture of Web Applications, 2001.
www.developer.ibm.com/library/articles
/booch_web.html.

[3] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed Requirements Acquisition. Science of Computer
Programming, 20:3–50, 1993.

[4] G. Kappel, W. Retschitzegger, W. Schwinger, Modeling
Ubiquitous Web-Applications – The WUML Approach,
Proceedings of the International Workshop on Data Se-
mantics in Web Information Systems, Kyoto, Japan,
2001.

[5] G. Kappel, W. Retschitzegger, W. Schwinger, Modeling
Customizable Web Applications – A Requirement’s
Perspective, Proceedings of the International Conference
on Digital Libraries, Kyoto, Japan, 2000.

[6] Object Management Group. Unified Modeling Language
(UML) Specification. Version 1.4, Technical report,
OMG, September 2001.

[7] UWA consortium. www.uwaproject.org
[8] UWA Consortium. General Definition of the UWA

Framework. Technical report EC IST UWA Project,
2001.

[9] K. Yue. What Does It Mean to Say that a Specification
is Complete? In Proceedings of IWSSD-4 – the Fourth
International Workshop on Software Specification and
Design , Monterey, CA, USA, 1987.

[10] M. Weiser, "Some computer science issues in ubiquitous
computing", CACM , Vol. 36, No. 7, July 1993.

