
1

1© Wolfgang Emmerich, 1997

Designing Distributed Objects

2© Wolfgang Emmerich, 1997

Motivation

nMany will have experience with designing
local objects that reside in the run-time
environment of an OO programming lang.

n Designing distributed objects is different!
n Explain the differences.
n Avoid some serious pitfalls



2

3© Wolfgang Emmerich, 1997

Local vs. distributed Objects

n References
n Activation/Deactivation
nMigration
n Persistence
n Latency of Requests
n Concurrency
n Communication
n Security
è Several Pitfalls are lurking here

4© Wolfgang Emmerich, 1997

Object References

n References to objects in OOPL are usually
pointers to memory addresses
• sometimes pointers can be turned into

references (C++)
• sometimes they cannot (Smalltalk,Java)

n References to distributed objects are
more complex
• Location information
• Security information
• References to object types

è References to distributed objects are
bigger (e.g 350 bytes with Orbix).



3

5© Wolfgang Emmerich, 1997

Activation/Deactivation

n Objects in OOPL are in virtual memory
between creation and destruction.

n This might be inappropriate for
distributed objects
• sheer number of objects
• objects might not be used for a long time
• some hosts might have to be shut down

without stopping all applications
n Distributed object implementations are

• brought into main memory (activation)
• discarded from main memory (deactivation)

6© Wolfgang Emmerich, 1997

Activation/Deactivation (cont’d)

BvB:Team

bookGoalies

Tony:Trainer

object
activated

object
deactivation



4

7© Wolfgang Emmerich, 1997

Activation/Deactivation (cont’d)

n Several questions arise
• Repository for implementations
• Association between objects and processes
• Explicit vs. implicit activation
• When to deactivate objects
• How to treat concurrent requests

nWho decides answers to these questions?
• Designer
• Programmer
• Administrator

n How to document decisions?

8© Wolfgang Emmerich, 1997

Persistence

n Stateless vs. statefull objects
n Statefull objects have to save their state

between
• object deactivation and
• object activation

onto persistent storage
n Can be achieved by

• externalization into file system
• mapping to relational database
• object database

n To be considered during object design



5

9© Wolfgang Emmerich, 1997

Object Lifecycle

n OOPL objects reside in one virtual
machine.

n Distributed objects might be created on a
different machine.

n Distributed objects might be copied or
moved (migrated) from one machine to
another.

n Deletion by garbage collection does not
work in a distributed setting.

n Lifecycle needs attention during the
design of distributed objects.

10© Wolfgang Emmerich, 1997

Latency of Requests

n Performing a local method call requires a
couple of hundred nanoseconds.

n An object request requires between 0.1
and 10 milliseconds.

è Interfaces of distributed objects need to
be designed in a way that
• operations perform coarse-grained tasks
• do not have to be requested frequently



6

11© Wolfgang Emmerich, 1997

Example: Iteration over a Sequence

n Java

Vector

+size():int
+elementAt(i:int):Object
...

n Distributed Objects

List

+long list (in how_many:long,
                  out l:sequence<object>,
                  out bi:Iterator i)

Iterator

+next_one(out o:Object): boolean
+next_n(in how_many:long,
               out l:sequence<object>):boolean

12© Wolfgang Emmerich, 1997

Concurrency

n Execution of OOPL objects is often
sequential

n Execution of distributed objects is always
concurrent

n Concurrency between
• processes
• within objects

n How to model concurrency
• Hoare’s CSP
• Milner’s CCS
• Magee & Kramer’s FSP



7

13© Wolfgang Emmerich, 1997

Concurrency Specification in FSP

1 2 3 4 50

think talk scratch

talk think

scratch scratch

1 20

think talk

10
scratch

ITCH=(scratch->STOP).
CONVERSE =(think->talk->STOP).

||CONVERSE_ITCH =(ITCH || CONVERSE).

14© Wolfgang Emmerich, 1997

Communication

nMethod invocations of OOPL objects are
synchronous

n Alternatives for distributed objects:
• synchronous requests
• oneway requests
• deferred synchronous requests
• asynchronous requests

nWho decides on request
• Designer of server?
• Designer of client?

n How documented?



8

15© Wolfgang Emmerich, 1997

Security

n Security in OO applications can be dealt
with at session level.

n OOPL Objects do not have to be written in
a particular way.

n For distributed objects:
• Who is requesting an operation execution?
• How can we know that subject is who it

claims to be?
• How do we decide whether or not to grant

that subject the right to execute the service?
• How can we prove that we have delivered a

service so as to make the requester pay


