-

Trading

© Wolfgang Emmerich, 1997

% Motivation

E— |

m Locating objects in location transparent way

m Naming simple but may not be suitable when
 clients do not know server
* there are multiple servers to choose from

m Trading supports locating servers based on
service functionality and quality

m Naming « White pages
m Trading « Yellow Pages

© Wolfgang Emmerich, 1997

UCL Trading Characteristics

m Trader operates as broker between client and
server.

m Enables client to change perspective from
‘who?” to ‘what?”

Exporter < Importer

m Similar ideas in:
* mortgage broker
e insurance broker

» stock brokerage
© Wolfgang Emmerich, 1997

% Trading Characteristics

m Common language between client and
server:

» Service types
* Qualities of service
m Server registers service with trader.
m Server defines assured quality of service:
e Static QoS definition
* Dynamic QoS definition.

© Wolfgang Emmerich, 1997

UCL Trading Characteristics

m Clients ask trader for
» aservice of a certain type
 at a certain level of quality
m Trader supports
» service matching
» service shopping

© Wolfgang Emmerich, 1997

UCL Example
m Hongkong Telecom video-on-demand
server:
Server
Video-on-
demand
provider

© Wolfgang Emmerich, 1997

UCL The Trading Process

m Example: Video-on-demand server

:Trader

MGM:VoDS Warner:VoDSI
_export()
h [

< export ()
query()
0 >
. nodi fy()
| downl oad() O~ N
© Wolfgang Emmerich, 1997
% Service Type Definition

m Service types define
* Functionality provided by a service and
» Qualities of Service (QoS) provision.

m Functionality defined by object type

m QoS defined based on properties, i.e.
* property name
* property type
e property value
e property mode
—mandatory/optional
—readonly/modifiable

© Wolfgang Emmerich, 1997

UCL. Service Type Example
E——|

t ypedef enum { VGA, SVGA, XGA} Resol uti on;

servi ce video_on_demand {
I nterface VideoServer;
readonly mandatory property float fee;
readonly mandatory property Resol ution res;
opti onal mandatory property float bandw dt h;

© Wolfgang Emmerich, 1997

ﬁ; Service Type Hierarchy

m An object type might have several
implementations with different QoS.

m Same object type might be used in
different service types.

m Service type S is subtype of service S’ iff

* object type of Sis identical or subtype of
object type of S’

* S has at least all properties defined for S’

m Subtype relationship can be exploited by
trader for service matching purposes

© Wolfgang Emmerich, 1997

10

UCL, Constraint Definition
—

m Importer defines the desired qualities of
service as part of the query:

m Example:
f ee<10 AND res >=SGA AND bandw dt h>=256

m In a query, trader matches only those
offers that meet the constraint

© Wolfgang Emmerich, 1997 11

ﬁ; Trading Policies

m Depending on constraint and available
services, a large set of offer might be
returned by a query.

m Trading policies are used to restrict the
size of the matched offers
» Specification of an upper limit
* Restriction on service replacements

* Restriction on modifiable properties (these
might change between match making and
service requests)

© Wolfgang Emmerich, 1997 12

UCL Federated Traders

m Scalability demands federation of traders

m A trader participating in a federation

» offers the services it knows about to other
traders

» forwards queries it cannot satisfy to other
traders

m Problems
* Non-termination of import
* Duplication of matched offers

© Wolfgang Emmerich, 1997

13

%L Trading Graph
T1 —«—query.hop_count=4
° B def_follow_policy=always

max_hop_count=5 max_hop_count=1
T2

® Service Offer
I Trader Attribute
| ink

© Wolfgang Emmerich, 1997

query.hop_count=0

14

% CORBA Trading Service

Application Domain CORBA
Objects Interfaces facilities

r v gy Y
Object Request Broker

@) @) [Object J

Trader

CORBAservices

© Wolfgang Emmerich, 1997 15

FY

UCL Defining Quality of Service

typedef Istring PropertyNane;
t ypedef sequence<PropertyNane> PropertyNanmeSeq;
t ypedef any PropertyVal ue;
struct Property {
Propert yNanme nane;
PropertyVal ue val ue;
3
t ypedef sequence<Property> PropertySeq;
enum HowMvanyPr ops {none, sone, all}
uni on Speci fiedProps swi tch (HowManyProps) {
case sonme : PropertyNanmeSeq prop_nanes;

b

© Wolfgang Emmerich, 1997 16

% Trader Interface for Exporters

—— |

interface Register {
Oferld export(in Object reference,
in ServiceTypeNane type,
in PropertySeq properties)
raises(...);
Oferld withdraw(in O ferld id)
raises(...);
void nodify(in Oferld id,
i n PropertyNaneSeq del |ist,
in PropertySeq nodify |ist)
raises (...);

}

'© Wolfgang Emmerich, 1997 17

% Trader Interface for Importers

m—r |

interface Lookup {
voi d query(in ServiceTypeNane type,
in Constrai nt const,
Preference pref,
Pol i cySeq policies,
Speci fi edProps desired_props,
n unsi gned | ong how_many,
out O ferSeq offers,
out Oferlterator offer _itr,
out PolicyNameSeq Limts_applied)
raises (...);

H 18

© Wolfgang Emmerich, 1997

=)

5 35 O S

