i

UCL
—

D50: Advances in Software Engineering

Requirements Model

Wolfgang Emmerich

© Wolfgang Emmerich, 1998/99

i

itol) Lecture Overview
e

Object-Oriented Software Engineering (OOSE)
from Jacobson et al.

The basics of ‘a use case driven approach’
Development of a Requirements Model:

* actors

* Use cases

interface descriptions

problem domain objects

Relevant notations from the UML (Unified
Modeling Language)

© Wolfgang Emmerich , 1998/99

We have selected lvar Jacobsons OOSE method for this course
because we do not think that it is feasible to teach all relevant
methods.

The selection of object-oriented software engineering derives
partially from the fact that it supports use case modelling, which we
believe is important for the elicitation of requirements from
stakeholders. It is also due to the fact that we believe OOSE gives
more detailed process guidance than the other two methods.

The sub-title of the book ‘a use case driven approach’ summarises
the originality of the approach, its value and much of its structure. A
‘use case model’, in essence a representation of how the system is
used, and will be used, has a formative relationship with all the
models used in OOSE.

The focus of this lecture will be on a subset of this method that
identifies the notations and the development procedures and
heuristics in order to derive a requirements model.

The lecture will also introduce the first elements of the UML as the
form of notation. This is a new notation language, only just
launched in a complete form by the previously competing authors
of object-oriented methods: Grady Booch, James Rumbaugh and
Ivar Jacobson.

The next slide gives a little bit of background information of where
OOSE originated from...

‘L% OOSE Background

m Originated in Sweden

m "Object-Oriented Software Engineering -
A Use Case Driven Approach” by Ivar
Jacobson, Magnus Christerson, Patrik
Jonsson & Gunnar Overgaard, Addison-
Wesley , 1992

m Pragmatic method based on experience
m Popular and successful
m Complete method

© Wolfgang Emmerich , 1998/99

The OOSE emphasis on the user and use cases is not surprising
given Scandinavian concern with participative design.

The method originates from work in the electronics firm Ericsson,
and the book contains a Ilengthy and very detailed
telecommunication example. Telecommunication is a domain
where the application of object-orientated methods is particularly
successful. This is partly due to the fact that telecommunication
software is so complex and changes so drastically that structure-
oriented method have failed. The ESS5 switching system produced
by AT&T, for instance, comprises 5 million lines of C++ code and
has been delivered in different configurations to at least 20 different
telecom networks in different countries.

Besides having, or perhaps because of having practical origin, the
object-oriented software engineering method is successful both
commercially and as a teaching method.

The method is also complete, in the sense of covering all stages of
system development, procedures (and notations), and supported
by a case tool called Objectory, which is available here at City
University.

Indications from the documentation for the UML suggest that it
includes definitions of all the essential concepts that are required
for OOSE.

In order to start the introduction of OOSE and UML, we are going
to look at what the constituents of a method are...

—|

— What comprises a Method?
IVi—F£d]

m Method described via
» syntax (how it looks)
» semantics (what it means)

» pragmatics (heuristics, rules of thumb for
use)

© Wolfgang Emmerich, 1998/99

A method that is to be used during in a certain stage of a software
engineering project has to be defined in terms of the notation that is used
for producing the products expected during that stage and the development
heuristics and procedures used for producing the products.

The notation is defined in terms of syntax and semantics. The syntactic part
of the notation can be determined in terms of a grammar, be it for a textual
or a graphical language. Hence the syntax determines the grammatical
correctness of the grammar. Rules such as dataflows must start from or
lead to a process of a Dataflow diagram would be defined as part of the
grammar for a graphical definition. For the grammar of C++ we would
include rules that each statement must be finished with a semicolon.

The semantics of a language can be distinguished in static and dynamic
respects. The static part typically identifies scoping and typing rules, such
as that declaring occurrences of identifiers must be unique within a certain
scope and that applied occurrences must match with particular
declarations. The dynamic semantics defines the meaning for different
concepts of the notation (that usually have to be correct with respect to
syntax and static semantics).

The pragmatics of a method identifies suggestions and heuristics of how a
notation should be used. It identifies which concept of the notation should
be used to express different concerns (such as operations should express
behaviour and attributes should express states) and may suggests orders
for the development (such as identify the different classes, then establish
the state they capture in terms of attributes and finally determine the
operations).

We now look at the coarse-grained pragmatics of OOSE and reveal what
different development steps Jacobson suggests...

i

et System Dev. as Building Models

m 3 stages and 5 models

— ANALYSIS—® CONSTRUCTION— TESTING—®

Requirements Modek; Design Model: Testl/lodel:
captures functiona impose implementation documentation
requirementsfrom % constraints on analysis:, and test results

user perspective | model ‘
Analysis Model: Implementation Model:
maintainable with system code written
logical structure; from the design model
implementation-
independent
- > ot

Seamless, incremental transition between stages and models, iterations possible

© Wolfgang Emmerich , 1998/99

» Jacobson views system development as a process consisting of
stages that produce model descriptions. Each partial model is an
abstraction of the system enabling the developer to make decisions
necessary to move closer to the final (complete) model, the tested
executeable code of the system. Each modelling step adds more
structure; each model is more formal. In the diagram a sequence of
specific objectives is shown under the model titles.

* One of the advantages of object-orientation is that it favours
incremental development. Incremental development denotes a
software development process, where it is not necessary to
complete all the requirements before the design can start. In these
processes it is, therefore, not uncommon to define the
requirements, design implementation and test components even
though the requirements of other components have not yet been
fully defined. Incremental processes are supported by object-
orientation because the same concepts, i.e. objects, classes,
inheritance, attributes and operations are used througout the
different models. Hence, analysis objects integrate seamlessly with
design objects; from these again there is a seamless integration
with implementation objects. The reverse direction is equally well
supported.

e This lecture is concerned only with the first OOSE model,
requirements; the next is about analysis and the following two
about design.

* The next thing to do is to show the relationship between processes
and models in OOSE i.e. between the processes and the methods
and techniques for modelling ...

i

Citol 3 Analysis Stage

m Primary objectives
» to determine what the system must do

» to embed the software system in its
environment

m Two concerns
* to get the right thing
* to get the thing right (now and for future)

m Products requirements
« Requirements Model ﬁ?) Do B

« Analysis Model 00 interfaces

use case mode
domain object model

Reguirements Model

customer

© Wolfgang Emmerich , 1998/99

» The requirements stage is concerned with what users expect a
system to achieve, it is not concerned with how the system is going
to achieve its objectives. It is sometimes difficult for a software
engineer to keep these two different perspectives apart; hence care
should be taken in order to not confuse them.

* In order to identify the objects that are involved in performing
certain functions for a system, it is not sufficient to focus on the
system in isolation. The requirements stage, therefore, takes a
more wholistic view and identifies the embedding of the future
system into its environment. In requirements definitions, it is
therefore not uncommon to have objects, such as the librarian of a
library support system, that will have no representation in the
system itself. Also existing systems that need to be integrated with
a new system are often regarded as objects.

* The analysis stage produces two modules to address different
concerns. The requirements model defines how to get the right
thing and the analysis model defines how to get the thing right.

» The requirements model has three elements, two models and a set
of more generally defined interface descriptions.

* The analysis model, the second component of this phase, is a
description in terms of interface, entity and control objects,
considered in detail in the next lecture.

» From the practical point of view taken in this course, it is necessary
to balance the theoretical view with a detailed, sequential account
of the process that we look at on the next slide ...

% Producing A Requirements Model

m Inputs
1 Derive possible use cases
2 Discriminate between possible use cases
3 Generate use case desciptions
4 Identify associations between use cases
5 Refine & complete use cases & use case model
6 Describe and test user interfaces
7 Describe system interfaces
8 Identification of problem domain objects
9 Check incorporation of requirements

m Outputs
m Notations

© Wolfgang Emmerich , 1998/99

» This slide presents an overview of the procedures that have to be
followed when developing the requirements model. The
requirements model consists of use cases. These are used to
identify different scenarios, for instance for different user roles, as
to how the system will be used.

» The first step is very much a brainstorming activity where different
scenarios are captured in as many use cases as possible. The
second step tries to identify, order the different scenarios and get
rid of duplicates. The third step refines each of the use cases with a
text describing each use case in more detail. The fourth step
identifies extension so and usage relationships between the so far
isolated use cases. The fifth step refines and completes the use
case model. Then the user interface of the system is defined and
tested as the sixth step. These first prototypes of the system often
generates requirements that were unidentified previously. After that
the seventh step defines the system interfaces to systems that
previously existed and need to be integrated. The eighth step is, in
fact, already a preparation of the analysis phase and it identifies
the domain objects. The final and optional step validates that the
informal requirements definitions that served as an input have been
captured in the use cases, user interface and system interface
definitions.

* The lectures will concentrate on the concepts and models used,
leaving detailed procedures to tutorial work. For your convenience
the last two pages of these notes include a complete breakdown of
the above steps.

» A definition of the inputs and outputs for the steps follows on the
next slide...

% Requirements Model: Input & Output

m /nputs :
» User requirements specifications [multi media]

« Documentation of existing systems, practices
etc. that are to be followed [text, graphic]

* Exchanges between developers and users and
specifiers [m m]
m Outputs :
» use case model [graphic]
concise descriptions of use cases [text]
user interface descriptions [text ... prototypes]
system interfaces [protocols]
problem domain object list (names, attrib.) [text]

8

© Wolfgang Emmerich , 1998/99

» The inputs to requirements modelling are the diverse sources from
which system requirements may be derived, and the variety of
media in which they may be carried. Usually there are textual
descriptions that stake holders produce in order to outline the goals
that the system should meet. Also (especially bigger organisations)
have business process descriptions outlining the workflow that a
system might have to support. Finally, meetings with future stake
holders where requirements are explicitly elicitated are often
recorded on audio or video tapes and these tapes might be
transcribed in order obtain the relevant textual description from
which requirements can be extracted.

* The output will formalise these inputs both in terms of their
content, as use cases and the use case model, and in term of their
representation via UML diagrams and texts.

i

UL Requirements Model: Notations

m Notations introduced :

» use case diagram (system box, ellipses,
names, actor icons, actor/case links, <uses>
and <extends> associations)

e association (<extends>, <uses>)
* use case descriptions

© Wolfgang Emmerich, 1998/99 9

* The notations introduced include all those included in the UML for
use case model, plus the first associations, the generic term used
for relationships in UML.

* Let us now begin to consider requirements with an example taken
from Jacobson's book...

i

itol) Requirements Example
e

Multi-purpose recycling machine

Machine must:
Recycle Machine - receive & check items for customers,
- print out receipt for items received,

@ Receipt . . .
- print total received items for operator,
Ocans - change system information,
OB"‘“&‘ - signal alarm when problems arise.

D -
e ——

© Wolfgang Emmerich , 1998/99 10

* For the details of this example, consider pages 155-156 of
[3CJ092].

10

i

UL Actors
e

m An actor is:

» anything external to the system, human or
otherwise

e auser type or category
m A user doing something is an occurrence
of such a type

m A single user can instantiate several
different actor types

m Actors come in two kinds:
e primary actors, using system regularly
» secondary actors, enabling primary actors

© Wolfgang Emmerich , 1998/99 11

Analysis begins with the identification of actors external to the system;
they are a generic way of describing the potential users of the system.
In identifying actors we will need to consider scenes or situations
typical to the system and its use. Please note that the users might not
necessarily be humans but they might also be other systems that use
the system through its system interfaces.

The important distinction here is between the actor and the user.
Actors are a type perspective while users denote particular instances
of these types. A particular system user, e.g. Jane a warehouse
manager, may at different times take on the roles of many different
actors, e.g. supervisor, driver or operator. Actors only relate to the
system in specified ways in particular use cases.

A distinction between primary and secondary actors is made in OOSE
but not UML. Examples:

* recycling machine:
 customer (primary)
» operator (secondary)
» warehouse:

* supervisor, worker, truck driver, forklift operator (all
primary)

* air traffic control:
» controller, supervisor, pilot (primary),
* maintenance team (secondary).

The interaction between the system and the actor is a sequence
known as a ‘use case’ which we will detail on the next slide...

11

b,
s USE CASES

m A Use case

e constitutes complete course of events
initiated by actor

» defines interaction between actor and system
* js a member of the set of all use cases which

m Use cases together define all existing
ways of using the system

,— initiates
actor — "= usecase

instantiated as instantiated as

User |nitiates Scenario 12
© Wolfgang Emmerich , 1998/99

A use case is a generic description of an entire transaction of
events involving the system and objects external to it. A use case
can therefore be seen as a description of different states and the
events that make the system transit from one state to another.

Together the uses cases represent all the defined ways of using
the system and the behaviour it exhibits whilst doing so.

Again we separate types and instances for use cases. Each use
case is a specific type of using the system. A scenario (in UML)
denotes an instance of a use case. When a user (an actor
instance) inputs a stimulus, the use case instance (a UML
scenario) executes and starts a transaction belonging to the use
case, consisting of actions to perform.

In OOSE the sytem model, as a whole, is use case driven. So if
you want to change the system’s behaviour, you should remodel
the appropriate actor(s) and use case(s).

On the next slide, we revisit the recycling machine example and
look at examples of its use cases...

12

i

UcL Example Use Case

m Returning items is started by Customer
when she wants to return cans, bottles or
crates. With each item that the Customer
places in the recycling machine, the
system will increase the received number
of items from Customer as well as the
daily total of this particular type. When
Customer has deposited all her items,
she will press a receipt button to get a
receipt on which returned items have
been printed, as well as the total return
sum.

© Wolfgang Emmerich , 1998/99 13

The top of this slide includes a description of an example use case
for the recycling machine, plus one scenario that instantiates the
use case for a particular user.

Another example of a use case for a familiar London Underground
machine is given below:

Destination_Ticket (alternative to Zone_Ticket) begins when a
potential Traveller approaches the ticket machine. The machine
displays an introductory message inviting choice of destination.
Traveller picks destination. Machine dispays message inviting
choice of ticket. Traveller picks a ticket type and the machine
responds with the price. After the traveller has inserted enough
money, the machine dispenses the ticket and any change. Machine
then prepares for its next customer.

The set of all use cases is represented in the ‘use case model’, for
which there is a special diagram in OOSE, adapted almost exactly
in the UML. We look at these diagrammatic notation on the next
slide...

13

Tct Use Case Model

i,

m A use case model
» presents a collection of use cases

» characterise behaviour of whole system, plus
external actors

Recycling Machine

i ™S Returning Generate
Customer’ item report
Changeitem
infor mation [

Operator

© Wolfgang Emmerich , 1998/99 14

A ‘use case model’ combines all the use cases of a system and at
the top level helps to visualise the context of the system and its
boundary.

The diagram notation used for expressing the use case model is
defined in the UML. Actors are classes, notated in their simplest
form as stick figures with an instance name (or class box). Ellipses
represent the different use cases and have an identifier naming
them. Also the whole name is given a name. Lines identify the
associations between actors and use cases.

In this model an actor, for example a ‘clerk’ in a model of a bank
system, can be associated with an number of different cases, e.qg.
‘counter transaction’, ‘cheque clearing’, ‘audit’ and more than one
actor with one use case e.g. ‘customer and ‘operator’ in a
‘stuck_item’ use case in the recycling machine example.

The identification of each use case requires a detailed
consideration of the system’s requirements. A systematic approach
representing the different use cases will be presented on the next
slide.

14

i,

Citol 3 Identifying Use Cases

m Consider situation,

Identify actors,

Read specification,

Identify main tasks,

Identify system information,

Identify outside changes,

Check information for actors,

Draft initial use cases [text]

Identify system boundary,

m Draft initial use case model [graphic]

© Wolfgang Emmerich , 1998/99

In order to kick off the use case modelling different scenes and situations should
be identified from the problem domain that is to be addressed by the system to be
developed.

The next step should aim at identifying the different actors that are involved in
each scene. Remember that not only the human actors should be identified but
also actors that are other system should be considered.

Keeping this information in mind the specifications, transcripts of recorded
information that form the input to the requirements modelling stage should be
revisited for each actor in order to identify the main tasks that the actor would
need to perform with the system.

Then the information objects that each actor would need to access (read), create
(write) or change would need to be identified.

Actors would usually use the system in response to outside events/changes. A
clerk in a bank, for instance would use the system in order to input a transaction
that is required to bank a customer's cheque. Hence, the fact that a customer has
handed in a cheque would be considered as an outside event.

Next, the events/changes that actors need to be informed about should be
identified.

Then the gathered information should be used to draft use cases, essentially
detailed text descriptions of the interactions between actors and the system.

Then the system boundary should be drawn, clearly separating what parts of the
processes/procedures are going to be embedded into the system and which are
not.

Finally, the initial use case model should be drafted using the graphic UML
notation. Note that at any of these steps it might become necessary to interact
with stakeholders in order to resolve incompleteness and inconsistencies.

15

i

TcL When is a Use Case ?
[—rruz=]]

m Discrimination between possible use
cases
» Estimate frequency of use,
 Examine degree of difference between cases

» Distinguish between 'basic’ and ’alternative’
courses of events

» Create new use cases where necessary

© Wolfgang Emmerich , 1998/99 16

Discrimination between cases is difficult because there may be so
many levels of difference. OOSE provides only weak rules for
discriminating between separate use cases.

The simplest discrimination are frequency, Vvariation and
alternation.

A fairly useful suggestion of Jacobson is to distinguish between
basic and alternative courses of events. A basic sequence of
events would identify the normal situations in which a system would
be used. A sequence of events would be denominated as
alternative if the events represent exceptional conditions that would
not be considered as normal.

This distinction, for instance, allows developers later to tune the
system to perform efficiently for those cases that are rather usual
and trade in performance of those cases that occur less frequently.

On the next slide we will revisit the recycling machine example and
elaborate the ‘Returning item’ use case...

16

i

TCL Elaborated Example

BASIC - When the Customer returns a deposit item, it is
measured by the system. The measurements are used to
determine what kind of can, bottle or crate has be
deposited. If accepted, the Customer total is incremented,
as is the daily total for that specific item type.

ALTERNATIVE - If the item is not accepted, 'NOT VALID’
is highlighted on the panel.

BASIC - When Customer presses the receipt button, the
printer prints the date. The customer total is calculated
and the following information printed on the receipt for
each item type: name, number returned, deposit value,
total for this type. Finally the sum that the Customer
should receive is printed on the receipt.

© Wolfgang Emmerich , 1998/99 17

In this returning item use case we now distinguish basic, i.e.
different normal sequences of events from alternative flows, i.e
when error conditions appear.

We would have to elaborate the use case we had earlier for the
London Underground ticket machine to include at least one
altenative for a Traveller who makes choices in the ‘wrong’ order.

In considering such problems you can often find that a use case,
while being independent, may have a clear association within
another use case because it somehow represents a special case
that extends an existing use case.

We will now look at different associations between use cases...

i

Citol 3 User Interface Descriptions
e

m Describe user interfaces

m Test on potential users,

n if necessary using

n simulations or prototypes

Operator’s interface

Change bottle data
Type:
Sizee

Value—

18

© Wolfgang Emmerich , 1998/99

Use cases are used to formalise requirements from informal
requirements specifications, transcripts of recorded requirements
elicitation meetings and other discussions with stakeholders.

An orthogonal (and constructive) way of obtaining further
requirements is to use the information that was accumulated during
the use case modelling for the description or even the prototyping
of user interfaces for the later system. A user interface is human
machine interface through which human actors interact with the
system.

There are mechanisms by means of which just the graphical user
interface with its windows, menus and forms can be effectively
generated. After exposing users to these prototypes they will be
able to tell what they like and what they do not like and even more
importantly what is missing.

However, it is important to note that these user interface prototypes
are included solely as a means of requirements capture and
building use cases, not for the purposes of detailed design. They
are reqgularly discarded after they have served to identify the
requirements.

The user interfaces in the recycling machine example include:
» customer panel (holes, buttons etc.),
* receipt panel,
* operator interface.

System interfaces for non-human actors are defined in terms of the
protocols necessary for the communication between the different
systems involved.

18

i

Citol 3 Problem Domain Objects

m Object in specification have direct
counterpart in the application
environment

m System knowledge obligatory

m Refinement in stages :
* Object noun ->

Logical attributes ->

Static associations

Inheritance ->

Dynamic associations ->

» Operations

© Wolfgang Emmerich , 1998/99

19

* Inthe longer term the identification of problem domain objects is an
essential prerequisite for preparing a class diagram. At the
requirements model stage its importance lies in the necessity for:-

« definition of objects in use cases, and,

* communication between the developers and those who have
commissioned or use will use the system.

* In OOSE objects are refined progressively in stages. The later
stages of refinement are not really possible within context of the
requirements model because they must cope with dynamic
characteristics. In the view of Jacobson, other methods
(presumably like OMT), rely completely on object models, which
can result in a fixed and inflexible structure.

* The next slide revisits the recycling machine example to illustrate
how to find basic domain objects...

i

Uct Object Examples

e
OBJECT ATTRIBUTES
name characteristic / information : type
Deposit item name: string, total: integer, value: ECU
Can width: cm, height: cm
Bottle width: cm, height: cm, bottom: cm
Crate width: cm, height: cm, lenght: cm
Receipt total cans: int, total bottles: int, ...

Customer panel receipt button: button
Operator panel bottle data: cm, ...

© Wolfgang Emmerich , 1998/99 20

* The left hand side identifies the various objects. They were found
by searching the use case descriptions for relevant nouns.
Candidate attributes for these objects are identified by looking at
properties of these nouns in the use case descriptions.

» At this stage ‘attributes’ are particular characteristics associated
with each object in the problem domain. At next stage we introduce
the notation in which every object contains name, attributes
(containing information derived from ‘static’ associations of object)
and operations (defined via its dynamic asociations)

» On completion of such a list we have the essential outputs from the
requirements stage. The next slide displays where we are...

20

i

L Summary
e

m System development as model building

m Requirements model “to get the right
thing”

m System use in context via the use case
model

m User interface descriptions

m Problem domain objects as prelude to
class diagram

© Wolfgang Emmerich , 1998/99 21

In OOSE almost everything is a model of some kind and building
systems means building such models. The first one, for requirements,
is the means for ensuring that, from the point of view of the users and
those commissioning the system, it will be clearly related to
documented expectations of use. The use case model provides the
first stage of formalising the requirements in a way that they can be
used throughout the subsequent stages of development. Specific user
interface descriptions, a subject in itself not covered here, provide an
additional dimension. Finally the problem domain objects comprise
the first stage in the primary sequence of formalisation, the
development of a class diagram in UML.

For your background reading, we would suggest the following
references:

[JCJO92] The Requirements Model. Section 7.2. pp. 153-174.
1992.

[Boeh88] B.W. Boehm: A Spiral Model of Software Development
and Enhancement. IEEE Computer. pp 61-72. May
1988.

21

