UCL
—

D50: Advances in Software Engineering
Distributed Objects

Wolfgang Emmerich

© Wolfgang Emmerich, 1998/99

h

itol) Lecture Overview
]

m Transparency

m OO Middleware

m Resolving Language Heterogeneity
m Resolving Data Heterogeneity

» OMG/CORBA

m Genericity

© Wolfgang Emmerich, 1998/99

h

UL Transparency
]

m Users and application programmers perceive
distributed system as a whole rather than a
collection of components

m Transparency has multiple dimensions that
were identified by ANSA [ANSA89] and in the
ISO ODP Standard [ISO92]

© Wolfgang Emmerich, 1998/99

itol) Transparency Dimensions
]
Scalability Performance Failure
Transparency Transparency Transparency
Migration Replication Concurrency
Transparency Transparency Transparency
Access Location
Transparency Transparency

© Wolfgang Emmerich, 1998/99

h

TCL Access Transparency
]

m Enables local and remote information objects
to be accessed using identical operations
m Examples
* File system operations in NFS
* Navigation in the Web
* SQL queries

© Wolfgang Emmerich, 1998/99 Backup Slide 5

h

TCL Location Transparency
]

m Enables information objects to be accessed
without knowledge of their location
m Examples
* Files in NFS
» Pages in the Web
» Tables in distributed databases

© Wolfgang Emmerich, 1998/99 Backup Slide 6

h

UL Concurrency Transparency
—

m Enables several processes to operate
concurrently using shared information
objects without interference between them

m Examples
* Automatic teller machine network
» Database management system

© Wolfgang Emmerich, 1998/99 Backup Slide 7

h

TcL Replication Transparency
—_—

m Facilitates use of multiple instances of
information objects to increase reliability and
performance without knowledge of the
replicas by users or application programs

m Examples
» Distributed DBMS
* Mirroring Web pages.

© Wolfgang Emmerich, 1998/99 Backup Slide 8

h

TCL Failure Transparency
———]

m Enables concealment of faults

m Allows users and applications to complete
tasks despite failure of other components.

m Example
» Database Management System

© Wolfgang Emmerich, 1998/99 Backup Slide 9

h

itol) Migration Transparency
]

m Allows movement of information objects
within system without affecting operations of
users or application programs

m Examples
« NFS
» Web Pages

© Wolfgang Emmerich, 1998/99 Backup Slide 10

h

TCL Scaling Transparency
———]

m Allows the system and applications to expand
in scale without changing system structure or
application algorithms.

m Examples
» World-Wide-Web
» Distributed Databases

© Wolfgang Emmerich, 1998/99 Backup Slide 11

dh

5ot Distribution Middleware Needed

Requirements for middleware:

m Component type definition
» Services offered by components
» Component state
* Relationships between components

m Resolution of heterogeneity
» Platforms
 Programming languages
* Networks
m Support in achieving transparency

© Wolfgang Emmerich, 1998/99 12

h,

Tct What is Middleware?

m Layered between Application and OS/Network
m Makes distribution transparent
m Resolves heterogeneity of
* Hardware
» Operating Systems
» Networks
* Programming Languages
m Provides development and run-time
environment for distributed systems.

© Wolfgang Emmerich, 1998/99 13

h,

= Categories of Middleware

m Message-Oriented Middleware
* IBM MQSeries
» DEC Message Queue
* NCR TopEnd

m Transaction-Processing Middleware
« IBM CICS
* BEA Tuxedo
* Encina

m Object-Oriented Middleware
« OMG/CORBA
« DCOM
. Java/RMI
m These are converging! We focus on OO.

© Wolfgang Emmerich, 1998/99 14

ﬁ ISO/OS| Reference Model

Application

Presentation

Session

Transport

Network
Data link

Physical

© Wolfgang Emmerich, 1998/99 15

Tt Transport Layer

m How are we going to
transmit object
requests between
hosts?

m Two facets in UNIX
e TCP and

 UDP.

© Wolfgang Emmerich, 1998/99 16

ﬁ ISO/OSI Session Layer

m Which object runs on
which machine?

m Layering object

queston op of

transport
m Activating objects
m Object Adapters and

Registries
© Wolfgang Emmerich, 1998/99 17
% ISO/OSI Presentation Layer

m At application layer:
complex data types &
Object references

m How to transmit
complex values through
transport layer?

m Presentation layer
Issues:

* Complex data structures
and

* Heterogeneity.

Presentation

© Wolfgang Emmerich, 1998/99 18

h

UL Complex Data Structures

e

» Marshalling: class Person {
Disassemble data private:
structures into ; Z; i di’b;’am_
transmittable form publ i c:

char * marshal () {
char * nsg;

= Unmarshalling: msg=new char [st rl en(name) +10]
g=new r[str ;
Reassemble the spri nt f (m5g,"%d, %d, %s", dob,

complex data structure. syienmname),name);

return(msg);
},.
},.
© Wolfgang Emmerich, 1998/99 19
Citol 3 Type Safety
=

m How can we make sure that

» servers are able to perform operations requested
by clients?

» actual parameters provided by clients match the
expected parameters of the server?

» results provided by the server match the
expectations of client?

m Middleware acts as mediator between client
and server to ensure type safety.

m Achieved by interface definition in an agreed
language.

© Wolfgang Emmerich, 1998/99 20

E Facilitating Type Safety

Request
>
Client
—— |
Reply
Interface
Definition
© Wolfgang Emmerich, 1998/99 21
Citol 3 Stubs
_—

m Creating code for marshalling and
unmarshalling is tedious and error-prone.

m Code can be generated fully automatically
from interface definition.

m Code is embedded in stubs for client and
server.

m Client stub represents server for client,
Server stub represents client for server.

m Stubs achieve type safety.
m Stubs also perform synchronization.

© Wolfgang Emmerich, 1998/99 22

Local Call vs. Remote Request

UCL
—
Caller
\/ Stub
Stub
Transport Layer (e.g. TCP or UDP)
© Wolfgang Emmerich, 1998/99 23
Tt Synchronization
—

m Goal: achieve similar synchronization to local
method invocation

m Achieved by stubs:
» Client stub sends request and waits until server
finishes
» Server stub waits for requests and calls server
when request arrives

© Wolfgang Emmerich, 1998/99 24

h

e Facilitating Access Transparency

m Client stubs have the same operations as
server objects

m Hence, clients can
* make local call to client stub
» orlocal call to server object
without changing the call.

m Middleware can accelerate communication if
objects are local by not using the stub.

© Wolfgang Emmerich, 1998/99 25

dh

Lo

5ot Facilitating Location Transparency

m Object identity
m Object references

m Client requests operation from server object
identified by object reference

m No information about physical location of
server necessary

m How to obtain object references?

© Wolfgang Emmerich, 1998/99 26

h

Tct Motivation
]

m Components of distributed systems are
written in different programming languages

m Programming languages may or may not have
their own object model

m Object models largely vary

m Differences need to be overcome in order to
facilitate integration

© Wolfgang Emmerich, 1998/99 27

h

e Resolving Language Heterogeneity

 Smalltalk

\/¢ ;l Ada-95

Common
Object
Model

Cobol N

© Wolfgang Emmerich, 1998/99

h,

o B Purpose of Common Object Model

m Meta-model for middleware’s type system

m Defines meaning of e.g.
* object type

operation

attribute

request

exception

subtyping

m Defined general enough for mappings to most
programming languages

© Wolfgang Emmerich, 1998/99

29

h,

= Interface Definition Language

m Language for expressing all concepts of the
middleware’s object model

m Should be
» programming-language independent
* not computationally complete

m Bindings to different programming languages
are needed

m AS an example: OMG object model and
OMG/IDL

© Wolfgang Emmerich, 1998/99 30

dh

Lo

Tt Programming Language Bindings

Atomic data types /type constructors
Constants

Interfaces and multiple inheritance
Object references

Attribute accesses

Operation execution requests

m Exception declaration / handling

m Modules

m Middleware interface invocations

© Wolfgang Emmerich, 1998/99

31

h

i B Standardisation of Bindings

m Facilitate portability with respect to:
» Object requests
» Object implementations
* ORB interface invocations

m Decrease learning curve of developers

© Wolfgang Emmerich, 1998/99 32

h

L Data Heterogeneity

m Hosts of client and server might use different
data representation formats. E.g.:
* Mainframes are big-endian
* Unix servers & NT workstations are little-endians

n+3 n+2 n+1 n
little-endians ~ memory | ® | | | |

sign

n n+1 n+2 n+3
big-endians memory | ® | | | |

sign

© Wolfgang Emmerich, 1998/99 33

Citol 3 Data Heterogeneity (cont’d)
—

m Different programming languages use
different data representations, e.qg. Character
string “abc” in Pascal or C++:

Pascai memory | 3 | a | b | ¢ |

C++ memory | a | b | ¢ | 10 |

© Wolfgang Emmerich, 1998/99 34

h

Tct Motivation
]

m Data representations have to be converted
between client and server

m Conversion should be transparent to
application developer

m Generally achieved by middleware within
presentation layer implementation

© Wolfgang Emmerich, 1998/99

h

Citol 3 Approaches

35

m Mappings between native representations

» Standardized data representation, e.g.
— Sun’s external data representation (XDR)
— OMG'’s common data representation (CDR)
No transmission of the type definition
» Transmission of values and their types using an
abstract syntax notation e.g
—ASN.1

© Wolfgang Emmerich, 1998/99

36

TcL Object Management Architecture

Application Domain CORBA
Objects Interfaces facilities

Ob/ect Request Broker

O O 1

CORBAservices

© Wolfgang Emmerich, 1998/99 37

iy

Citol 3 Components involved at run-time
]

| Client] [Object Implementation \

Implementation Object
Skeletons Adapter

Dynamic i ORB
Invocation Interface

ORB Core

[One standardised interface

[] Oneinterface per object operation
I One interface per object adapter
=mmmmm ORB-dependent interface

© Wolfgang Emmerich, 1998/99 38

h

et Generation of Stubs/Skeletons

C Team.idl)

IDL-Compiler I f

s ey
% o ‘; i
C++ Compiler, Linker I | C++ Compiler, Linker

|
' —> included in v

——> generates
GE” > reads

© Wolfgang Emmerich, 1998/99 39

ﬁ Portable Object Adapter (POA)

m Facilitate object implementation portability
between different ORBSs

m Support light-weight transient objects

m Support persistent object identities (e.g. in
ODBMSs)

m Allow servants to implement multiple objects
m Support transparent object activation

m Extensible mechanism for activation policies
m Multiple POAS in one server

© Wolfgang Emmerich, 1998/99 40

Abstract POA Model

Generic applications

use components
whose types are
(yet) known.

not

© Wolfgang Emmerich, 1998/99

LUCL
e
Server
Q——
Client |
© Wolfgang Emmerich, 1998/99 41
UCL Generic Applications
e

Example: Object Browser

Name: | Wl f gang Enmmerich

Age: 31

42

iy

et Static vs. Dynamic Invocation
—

m Example: OMG/CORBA

| Client] ‘ Object Implementation ’

Lol]

Dynamic Implementation
i Skeletons
Invocation|

Object
Adapter

ORB
Interface

Client
Stubs

ORB Core

© Wolfgang Emmerich, 1998/99

iy

TcL Static Invocation
—

43

m Advantages:
* Requests are simple to define.
» Availability of operations checked by
programming language compiler.
* Requests can be implemented fairly efficiently.
m Disadvantages:
» Generic applications cannot be build.

 Recompilation required after operation interface
modification.

© Wolfgang Emmerich, 1998/99

44

h,

Tct Dynamic Invocation
]

m Interface to create operation execution
requests dynamically.

m Requests are objects.

m Attributes for operation name, parameters
and results.

m Operations to
* change operation parameters,
* issue the request and
» obtain the request results.

© Wolfgang Emmerich, 1998/99

h,

Tct Creation of Requests
]

45

i nterface bj ect {
ORBst at us create_request (

i n Context ctx, // operation context
in ldentifier operation,// operation to exec
in NVList arg_list, // args of operation
I nout Namedval ue result,// operation result
out Request request // new request object
in Flags req_fl ags // request fl ags

):

},.

© Wolfgang Emmerich, 1998/99

46

TCL Synchronous Request
e
Client Request Server
T i nvoke() | () |
© Wolfgang Emmerich, 1998/99
b, . .
TcL Dynamic Invocation
e

m Advantages:

» Components can be built without having the
interfaces they use,

» Higher degree of concurrency through deferred
synchronous execution.

» Components can react to changes of interfaces.
m Disadvantages:

» Less efficient,

» More complicated to use and

* Not type safe!

© Wolfgang Emmerich, 1998/99

h

TCL Interface Repository

m Makes type information of interfaces available
at run-time.

m Enables development of generic applications.
m Achieves type-safe dynamic invocations.

m Supports construction of interface browser.

m Used by Middleware itself.

© Wolfgang Emmerich, 1998/99 49
i
o Abstract Syntax Trees (ASTS)

m Interface repository persistently stores ASTs
of IDL modules, interfaces, types, operations

etc. Bank Myt

modul e BankMWgnt {
i nterface Requester; ModuleDef
interface TellerCQrl { A
typedef sequence<ATM> Request er Tellercirl
_ ATM.i st;
exception Invalid {}; InterfaceDef ||InterfaceDef

attribute ATM.i st ATNs;
voi d accept (ATM.i st

accept

in Requester req, TypedefDef—l
in short anount);

OperationDef

}; Invalid ATV
b ExceptionDef | |AttributeDef

© Wolfgang Emmerich, 1998/99 50

TcL AST Node Types
——
IRObject
Contained Container
OperationDef InterfaceDef ModuleDef
ExceptionDef ConstantDef

TypedefDef AttributeDef

© Wolfgang Emmerich, 1998/99

h

et Container (node with children)

51

i nterface Container @ |R®ject {
Cont ai ned | ookup(in ScopedName search_nane);
sequence<Cont ai ned> content s(
in DefinitionKind Iimt_type,
i n bool ean excl ude_inherited);

sequence<Cont ai ned> | ookup_nane(

in ldentifier search_nane,

in long | evel s_to _search,
in DefinitionKind Iimt_type,

i n bool ean excl ude_inherited);

};..

© Wolfgang Emmerich, 1998/99

52

ﬁ Contained (child)

i nterface Contained : | RMbject {

attribute ldentifier nane;
attri bute Repositoryld id;
attri bute VersionSpec version;
readonly attribute Contai ner defined_in;
Struct Description {

DefinitionKind kind;

any val ue;
¥

Descri ption describe();

} .

' © Wolfgang Emmerich, 1998/99

h

Ciiol Interface Definition
———]

53

interface InterfaceDef : Container, Contained {
attri bute sequence<l| nterfaceDef> base interfaces;
bool ean is_a(in Repositoryld interface_id),
struct FulllnterfaceDescription {

Identifier name;
Repositoryld id;

Repositoryld defined_in;
Reposi t oryl dSequence base_i nterfaces;

sequence<(per at i onDescri ption> operations;
sequence<Attri buteDescription> attributes;

}i
Ful | I nt erfaceDescription describe _interface();

},.

© Wolfgang Emmerich, 1998/99

54

4 Locating Interface Definitions

UCL
—

Alternatives:

m Any interface inherits the operation
InterfaceDef get _interface() from oj ect.

m Associative search using I ookup_nane.

m Navigation through the interface repository
using cont ent s and def i ned_i n attributes.

© Wolfgang Emmerich, 1998/99 55

b Example: Object Browser

UCL
—

m Use interface repository to find out about
object types at run-time
m Use dynamic invocation interface to obtain

attribute values

Name: | Wl f gang Enmerich

Age: 31

© Wolfgang Emmerich, 1998/99 56

r2=create_request ()

.
>

UcL Sequence Diagram
—_—
i:Interface
0:0bject Def
i =get _interface() \i i i
,D ! rl:
narre() : "'L:‘I Reguest
describe interface() E >ﬂ E
ril=create request() \i ' E
i nvoke() D L r2:
i i i Request

i nvoke()

}

© Wolfgang Emmerich, 1998/99

iy

UCL
—

Summary

57

= Transparency

m OO Middleware
m Resolving Language Heterogeneity

m Resolving Data Heterogeneity

» OMG/CORBA
m Genericity

© Wolfgang Emmerich, 1998/99

58

