
1© Wolf gang Emmerich, 1998/99

D50: Advances in Software Engineering
Distributed Objects

Wolfgang Emmerich

2© Wolf gang Emmerich, 1998/99

Lecture Overview

■ Transparency
■ OO MIddleware
■ Resolving Language Heterogeneity
■ Resolving Data Heterogeneity
■ OMG/CORBA
■ Genericity

3© Wolf gang Emmerich, 1998/99

Transparency

■ Users and application programmers perceive
distributed system as a whole rather than a
collection of components

■ Transparency has multiple dimensions that
were identified by ANSA [ANSA89] and in the
ISO ODP Standard [ISO92]

4© Wolf gang Emmerich, 1998/99

Access
Transparency

Location
Transparency

Concurrency
Transparency

Migration
Transparency

Performance
Transparency

Scalability
Transparency

Replication
Transparency

Failure
Transparency

Transparency Dimensions

5© Wolf gang Emmerich, 1998/99 Backup Slide

Access Transparency

■ Enables local and remote information objects
to be accessed using identical operations

■ Examples
• File system operations in NFS
• Navigation in the Web
• SQL queries

6© Wolf gang Emmerich, 1998/99 Backup Slide

Location Transparency

■ Enables information objects to be accessed
without knowledge of their location

■ Examples
• Files in NFS
• Pages in the Web
• Tables in distributed databases

7© Wolf gang Emmerich, 1998/99 Backup Slide

Concurrency Transparency

■ Enables several processes to operate
concurrently using shared information
objects without interference between them

■ Examples
• Automatic teller machine network
• Database management system

8© Wolf gang Emmerich, 1998/99 Backup Slide

Replication Transparency

■ Facilitates use of multiple instances of
information objects to increase reliability and
performance without knowledge of the
replicas by users or application programs

■ Examples
• Distributed DBMS
• Mirroring Web pages.

9© Wolf gang Emmerich, 1998/99 Backup Slide

Failure Transparency

■ Enables concealment of faults
■ Allows users and applications to complete

tasks despite failure of other components.
■ Example

• Database Management System

10© Wolf gang Emmerich, 1998/99 Backup Slide

Migration Transparency

■ Allows movement of information objects
within system without affecting operations of
users or application programs

■ Examples
• NFS
• Web Pages

11© Wolf gang Emmerich, 1998/99 Backup Slide

Scaling Transparency

■ Allows the system and applications to expand
in scale without changing system structure or
application algorithms.

■ Examples
• World-Wide-Web
• Distributed Databases

12© Wolf gang Emmerich, 1998/99

Distribution Middleware Needed

Requirements for middleware:
■ Component type definition

• Services offered by components
• Component state
• Relationships between components

■ Resolution of heterogeneity
• Platforms
• Programming languages
• Networks

■ Support in achieving transparency

13© Wolf gang Emmerich, 1998/99

What is Middleware?

■ Layered between Application and OS/Network
■ Makes distribution transparent
■ Resolves heterogeneity of

• Hardware
• Operating Systems
• Networks
• Programming Languages

■ Provides development and run-time
environment for distributed systems.

14© Wolf gang Emmerich, 1998/99

Categories of Middleware

■ Message-Oriented Middleware
• IBM MQSeries
• DEC Message Queue
• NCR TopEnd

■ Transaction-Processing Middleware
• IBM CICS
• BEA Tuxedo
• Encina

■ Object-Oriented Middleware
• OMG/CORBA
• DCOM
• Java/RMI

■ These are converging! We focus on OO.

15© Wolf gang Emmerich, 1998/99

Physical

Application

Presentation

Session

Transport

Network

Data link

ISO/OSI Reference Model

16© Wolf gang Emmerich, 1998/99

Physical

Application

Presentation

Session

Transport

Network

Data link

Transport Layer

■ How are we going to
transmit object
requests between
hosts?

■ Two facets in UNIX
networks:
• TCP and
• UDP.

17© Wolf gang Emmerich, 1998/99

ISO/OSI Session Layer

■ Which object runs on
which machine?

■ Layering object
request on top of
transport

■ Activating objects
■ Object Adapters and

Registries
Physical

Application

Presentation

Session

Transport

Network

Data link

18© Wolf gang Emmerich, 1998/99

Physical

Application

Presentation

Session

Transport

Network

Data link

ISO/OSI Presentation Layer

■ At application layer:
complex data types &
Object references

■ How to transmit
complex values through
transport layer?

■ Presentation layer
issues:
• Complex data structures

and
• Heterogeneity.

19© Wolf gang Emmerich, 1998/99

class Person {

 private:

 int dob;

 char * name;

 public:

 char * marshal() {

 char * msg;

 msg=new char[strlen(name)+10];

 sprintf(msg,”%d,%d,%s”, dob,

 strlen(name),name);

 return(msg);

 };

};

Complex Data Structures

■ Marshalling:
Disassemble data
structures into
transmittable form

■ Unmarshalling:
Reassemble the
complex data structure.

20© Wolf gang Emmerich, 1998/99

Type Safety

■ How can we make sure that
• servers are able to perform operations requested

by clients?
• actual parameters provided by clients match the

expected parameters of the server?
• results provided by the server match the

expectations of client?
■ Middleware acts as mediator between client

and server to ensure type safety.
■ Achieved by interface definition in an agreed

language.

21© Wolf gang Emmerich, 1998/99

Interface
Definition

Facilitating Type Safety

ServerClient

Request

Reply

22© Wolf gang Emmerich, 1998/99

Stubs

■ Creating code for marshalling and
unmarshalling is tedious and error-prone.

■ Code can be generated fully automatically
from interface definition.

■ Code is embedded in stubs for client and
server.

■ Client stub represents server for client,
Server stub represents client for server.

■ Stubs achieve type safety.
■ Stubs also perform synchronization.

23© Wolf gang Emmerich, 1998/99

Local Call vs. Remote Request

Called

Stub
Stub

Caller

Called

Caller
Caller

Transport Layer (e.g. TCP or UDP)

24© Wolf gang Emmerich, 1998/99

Synchronization

■ Goal: achieve similar synchronization to local
method invocation

■ Achieved by stubs:
• Client stub sends request and waits until server

finishes
• Server stub waits for requests and calls server

when request arrives

25© Wolf gang Emmerich, 1998/99

Facilitating Access Transparency

■ Client stubs have the same operations as
server objects

■ Hence, clients can
• make local call to client stub
• or local call to server object
without changing the call.

■ Middleware can accelerate communication if
objects are local by not using the stub.

26© Wolf gang Emmerich, 1998/99

Facilitating Location Transparency

■ Object identity
■ Object references
■ Client requests operation from server object

identified by object reference
■ No information about physical location of

server necessary
■ How to obtain object references?

27© Wolf gang Emmerich, 1998/99

Motivation

■ Components of distributed systems are
written in different programming languages

■ Programming languages may or may not have
their own object model

■ Object models largely vary
■ Differences need to be overcome in order to

facilitate integration

28© Wolf gang Emmerich, 1998/99

IDL

Common
Object
Model

Smalltalk

Cobol

Java

Ada-95C++

C

Resolving Language Heterogeneity

29© Wolf gang Emmerich, 1998/99

Purpose of Common Object Model

■ Meta-model for middleware’s type system
■ Defines meaning of e.g.

• object type
• operation
• attribute
• request
• exception
• subtyping

■ Defined general enough for mappings to most
programming languages

30© Wolf gang Emmerich, 1998/99

Interface Definition Language

■ Language for expressing all concepts of the
middleware’s object model

■ Should be
• programming-language independent
• not computationally complete

■ Bindings to different programming languages
are needed

■ As an example: OMG object model and
OMG/IDL

31© Wolf gang Emmerich, 1998/99

Programming Language Bindings

■ Atomic data types / type constructors
■ Constants
■ Interfaces and multiple inheritance
■ Object references
■ Attribute accesses
■ Operation execution requests
■ Exception declaration / handling
■ Modules
■ Middleware interface invocations

32© Wolf gang Emmerich, 1998/99

Standardisation of Bindings

■ Facilitate portability with respect to:
• Object requests
• Object implementations
• ORB interface invocations

■ Decrease learning curve of developers

33© Wolf gang Emmerich, 1998/99

Data Heterogeneity

■ Hosts of client and server might use different
data representation formats. E.g.:
• Mainframes are big-endian
• Unix servers & NT workstations are little-endians

little-endians

big-endians

memory
sign

n+3 n+2 n+1 n

memory
sign

n n+1 n+2 n+3

34© Wolf gang Emmerich, 1998/99

Data Heterogeneity (cont’d)

■ Different programming languages use
different data representations, e.g. Character
string “abc” in Pascal or C++:

Pascal

C++

3memory a b c

amemory b c \0

35© Wolf gang Emmerich, 1998/99

Motivation

■ Data representations have to be converted
between client and server

■ Conversion should be transparent to
application developer

■ Generally achieved by middleware within
presentation layer implementation

36© Wolf gang Emmerich, 1998/99

Approaches

■ Mappings between native representations
• Standardized data representation, e.g.

– Sun’s external data representation (XDR)
– OMG’s common data representation (CDR)

No transmission of the type definition
• Transmission of values and their types using an

abstract syntax notation e.g
– ASN.1

37© Wolf gang Emmerich, 1998/99

Application
 Objects

CORBA
facilities

CORBAservices

Domain
Interfaces

Object Request Broker

Object Management Architecture

38© Wolf gang Emmerich, 1998/99

One standardised interface
One interface per object operation

ORB-dependent interface
One interface per object adapter

 Dynamic
Invocation

Client
Stubs

 ORB
Interface

Implementation
 Skeletons

Client Object Implementation

ORB Core

 Object
Adapter

Components involved at run-time

39© Wolf gang Emmerich, 1998/99

C++ Compiler, Linker

Server

Client.cc Server.cc

C++ Compiler, Linker

Client

Team.idl

included in
generates
reads

IDL-Compiler

Teamcl.hh
Teamcl.cc Teamsv.cc

Teamsv.hh

Generation of Stubs/Skeletons

40© Wolf gang Emmerich, 1998/99

Portable Object Adapter (POA)

■ Facilitate object implementation portability
between different ORBs

■ Support light-weight transient objects
■ Support persistent object identities (e.g. in

ODBMSs)
■ Allow servants to implement multiple objects
■ Support transparent object activation
■ Extensible mechanism for activation policies
■ Multiple POAs in one server

41© Wolf gang Emmerich, 1998/99

Abstract POA Model

Client

ORB
?

POA

Server

42© Wolf gang Emmerich, 1998/99

Generic Applications

Example: Object BrowserGeneric applications
use components
whose types are not
(yet) known.

Person

Name:

Age:

Wolfgang Emmerich

31

43© Wolf gang Emmerich, 1998/99

 Dynamic
Invocation

Client
Stubs

 ORB
Interface

Implementation
 Skeletons

Client Object Implementation

ORB Core

 Object
Adapter

Static vs. Dynamic Invocation

■ Example: OMG/CORBA

44© Wolf gang Emmerich, 1998/99

Static Invocation

■ Advantages:
• Requests are simple to define.
• Availability of operations checked by

programming language compiler.
• Requests can be implemented fairly efficiently.

■ Disadvantages:
• Generic applications cannot be build.
• Recompilation required after operation interface

modification.

45© Wolf gang Emmerich, 1998/99

Dynamic Invocation

■ Interface to create operation execution
requests dynamically.

■ Requests are objects.
■ Attributes for operation name, parameters

and results.
■ Operations to

• change operation parameters,
• issue the request and
• obtain the request results.

46© Wolf gang Emmerich, 1998/99

Creation of Requests

interface Object {

 ORBstatus create_request (

 in Context ctx, // operation context

 in Identifier operation,// operation to exec

 in NVList arg_list, // args of operation

 inout NamedValue result,// operation result

 out Request request // new request object

 in Flags req_flags // request flags

);

 ...

};

47© Wolf gang Emmerich, 1998/99

invoke()

Client Request Server

Op()

Synchronous Request

48© Wolf gang Emmerich, 1998/99

Dynamic Invocation

■ Advantages:
• Components can be built without having the

interfaces they use,
• Higher degree of concurrency through deferred

synchronous execution.
• Components can react to changes of interfaces.

■ Disadvantages:
• Less efficient,
• More complicated to use and
• Not type safe!

49© Wolf gang Emmerich, 1998/99

Interface Repository

■ Makes type information of interfaces available
at run-time.

■ Enables development of generic applications.
■ Achieves type-safe dynamic invocations.
■ Supports construction of interface browser.
■ Used by Middleware itself.

50© Wolf gang Emmerich, 1998/99

module BankMgmt {

};

ModuleDef

BankMgmt

InterfaceDef

Requester

 interface Requester;

InterfaceDef

TellerCtrl

 interface TellerCtrl {

 };

TypedefDef

ATMList

 typedef sequence<ATM>
 ATMList;

ExceptionDef

Invalid

 exception Invalid {};

AttributeDef

ATMs

 attribute ATMList ATMs;

OperationDef

accept void accept(
 in Requester req,
 in short amount);

Abstract Syntax Trees (ASTs)

■ Interface repository persistently stores ASTs
of IDL modules, interfaces, types, operations
etc.

51© Wolf gang Emmerich, 1998/99

AST Node Types

Contained

IRObject

Container

ModuleDefInterfaceDefOperationDef

ExceptionDef

TypedefDef AttributeDef

ConstantDef

52© Wolf gang Emmerich, 1998/99

Container (node with children)

interface Container : IRObject {
 Contained lookup(in ScopedName search_name);
 sequence<Contained> contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited);

 sequence<Contained> lookup_name(
 in Identifier search_name,
 in long levels_to_search,
 in DefinitionKind limit_type,
 in boolean exclude_inherited);
 ...
};

53© Wolf gang Emmerich, 1998/99

Contained (child)

interface Contained : IRObject {

 attribute Identifier name;

 attribute RepositoryId id;

 attribute VersionSpec version;

 readonly attribute Container defined_in;

 struct Description {

 DefinitionKind kind;

 any value;

 };

 Description describe();

 ...

};

54© Wolf gang Emmerich, 1998/99

Interface Definition

interface InterfaceDef : Container,Contained {

 attribute sequence<InterfaceDef> base_interfaces;

 boolean is_a(in RepositoryId interface_id);

 struct FullInterfaceDescription {

 Identifier name;

 RepositoryId id;

 RepositoryId defined_in;

 RepositoryIdSequence base_interfaces;

 sequence<OperationDescription> operations;

 sequence<AttributeDescription> attributes;

 ...

 };

 FullInterfaceDescription describe_interface();

};

55© Wolf gang Emmerich, 1998/99

Locating Interface Definitions

Alternatives:
■ Any interface inherits the operation

InterfaceDef get_interface() from Object.
■ Associative search using lookup_name.
■ Navigation through the interface repository

using contents and defined_in attributes.

56© Wolf gang Emmerich, 1998/99

Person

Name:

Age:

Wolfgang Emmerich

31

Example: Object Browser

■ Use interface repository to find out about
object types at run-time

■ Use dynamic invocation interface to obtain
attribute values

57© Wolf gang Emmerich, 1998/99

o:Object
i:Interface

Def

r1:
Request

r2:
Request

i=get_interface()

name()

r1=create_request()

describe_interface()

invoke()

r2=create_request()

invoke()

Sequence Diagram

58© Wolf gang Emmerich, 1998/99

Summary

■ Transparency
■ OO MIddleware
■ Resolving Language Heterogeneity
■ Resolving Data Heterogeneity
■ OMG/CORBA
■ Genericity

