Unit Testing Tools

Wolfgang Emmerich
Professor of Distributed Computing
University College London

" http:/sse.cs.ucl.ac.uk

Context
. Inception on Cdnstruction Transition

Requirements 1 \
Analysis L

\\
Design //_ \

R N—]
. N

Implementation
Test

Preliminary 13 12 In In+l In+2 Im
Iterations

Learning Objectives

« To be aware of the spectrum of functionality provided
by unit testing tools

¢ To be able to define unit tests

« To be able to measure the quality of unit tests using
coverage analysis

« To be able to execute unit tests in a fully automated
fashion both inside and outside an IDE

Reminder: What is unit testing?

* Modern software production uses modular languages
* Modules may take different forms, e.g.
— Java / C#/ C++ classes
— Servlets and Server Pages,
— OSGi Bundles or
— Components / Beans / Enterprise Beans
« Integration is considerably simplified if quality of
modules is established beforehand
¢ This is done by unit testing
¢ Involves mundane tasks that should be automated

Requirements for Unit Testing Tools

« Definition and Execution of Unit Tests, even if
— Unit code not yet available (agile test-driven development)
— Units it depends on are not yet available
« Execution of unit tests
— Single tests
— Suites of a number of unit tests
— Interactively
— In an automated manner
¢ Summary and visualization of unit test results

Analysis of quality of unit tests - how well does a test
suite exercise the unit under test?

De-facto standard: JUnit

« JUnit was developed to unit test Eclipse
« Emerged from Sunit for unit testing Smalltalk classes
¢ Large number of derivatives:
— Nunit (for .NET development)
— DBUnit (for testing DB applications)
— Httpunit (for testing web applications)
« Principle idea:
— Define tests as methods in a test class
— Define suites of tests in packages
— Provide assertion framework to specify expected results
— Provide run-time infrastructure to automate the tests

JUnit Support in Eclipse: Test Definition

8N New JUnt Test Case

[——

il « Wizards for creating test
PR cases of both JUnit3 and
e - JUnit4

i *= « JUnit test cases are

e " methods in Java

o ¢ Use JUnit assertion
framework which is yet
another class.
To define the test case
just use the JDT
program editor

JUnit support in Eclipse: Test Execution

« Eclipse provides Junit
execution environment for
— Classes
— Packages

« Visualizes test case
execution results

¢ Drill-down to obtain
assertion failures and
exception details

« Supports navigation to failed
test cases

Using JUnit with ant

¢ Might want to automate unit test suites for execution
outside IDE (because they might take too long)

« Ant build.xml file:
<property name="junit.output.dir" value="junit"/>
<target name="junit">
<mkdir dir="${junit.output.dir}"/>
<junit fork="yes" printsummary="withOutAndErr">
<formatter type="xml"/>
<test name="uk.ac.ucl.cs.sse.test.Stack.StackTest”
todir="${junit.output.dir}"/>
<classpath refid="StackTest.classpath"/>
</junit>
</target>

Formatting JUnit reports with ant

¢ Junit produces text or XML output
¢ XML can be translated using an XSL stylesheet

¢ Use the following ant target in your build.xml file
<target name="junitreport" depends="junit">
<junitreport todir="${junit.output.dir}">
<fileset dir="${junit.output.dir}">
<include name="TEST-*.xml"/>
</fileset>
<report format="frames”
todir="${junit.output.dir}"/>
</junitreport>
</target>

Mock Components

¢ Unit tests should test just the unit under test and not
other units it depends on

« Requires replacing those units

¢ Can be mundane if classes have large number of
dependencies

« Mock frameworks support the systematic

replacement of dependencies without writing any
code through use of reflection

Top-Down white-box testing

« Consider the following design:

Publisher |1 .4 Subscriber
+add(_) +receive()
+publish()

¢ How to test Publisher without also building
Subscriber?
— Assertions need to be formulated on Subscriber
— Subscriber code needs to exist

Using Reflection and Mock Objects

* Basic ldea:

— Create mock objects for all classes that a class is
dependent on

— Use reflection to avoid having to code it

— Express assertions in temporal logic based on features
exhibited at the interface.

« Example:
— JMock (http://www.jmock.org)

JMock example

public void testNoSubscriberReceivesMessage(){
Mockery context = new Mockery();
final ISubscriber subscriber=context.mock(ISubscriber.class);

// set up expectations
context.checking(new Expectations(){{

never (subscriber).receive("message");

15

// execute
publisher.publish("message");

// check expectations are met

context.assertIsSatisfied();

Test Driven Development with JUnit and JMock

Static design <<interface>> <<interface>>
IPublisher ISubscriber

StubPublisher Publisher

+add() +add() Implementation
+publish() +publish()

JMockTestCase
Y%

PublisherTest .
ot Behavioural

+test1() design
+test2() 15

Reminder: Coverage Analysis

« White box analysis technique to validate quality of
unit tests

« Complementary to Cyclomatic complexity analysis
(which determines the maximum number of tests
required)

« Different forms
— Statement
— Branch
— defluse
— Method
— type coverage

Coverage Analysis with Emma

Supports analysis of
coverage
« Visualizes which
instructions have been
! covered (green) and
y ! which have not (red)
« Provides statistics

“/« Supports navigation

How Tools Perform Coverage Analysis in Java

Dynamic analysis technique
Instrument byte code

Coverage Coverage ‘ « To write details of executed
Instrumentation| Visualizer — Instructions
— Methods
— Classes etc
to file

« After execution analyze file
Original Instrumented Coverage . Vi I |
byte code byte code data isualize results

References

» Kent Beck. JUnit Pocket Guide. O'Reilly, 2004. ISBN

0-596-00743-4.

¢ A. Watson and T. McCabe: Structured Testing: A
Testing Methodology Using the Cyclomatic
Complexity Metric. NIST Special Publication 500-
235. http://www.mccabe.com/pdf/nist235r.pdf

¢ S. Freeman et al.: Mock Roles, not Objects. Proc.
OOPSLA 2004. DOI: 10.1145/1028664.1028765

+ Emma. http://emma.sourceforge.net/

» EclEmma http://www.eclemma.org/

Key Points

Unit testing needs to be
automated

Unit tests are written using
programming languages
Execution within or outside
IDE

Mocking supports isolation
of units under test
Coverage analyzers
provide feedback on quality
of unit tests

