Object and Model
Management in SDEs

Wolfgang Emmerich
Professor of Distributed Computing
University College London

Y http://sse.cs.ucl.ac.uk

Learning Objectives

« To learn about the principle data structures handled
by IDEs

« Appreciate the difference between parse trees and
abstract syntax trees

« Understand the design rationales of abstract syntax
trees and graphs

¢ Lay the foundation for working with the Eclipse JDT
component

Key requirement for tools in SDEs

Assist in editing correct formal language

— Point out syntactic errors

— Highlight static semantic errors

— Inform about inter-document consistency constraints
— Interpret and inspect

« Program editors are

— incremental compilers
— Language run-time environments

« They work on the same data structure as compilers
¢ Probably need a quick recap...

Parse Trees

+ A tree that represents the syntactic structure of a
sentence according to a grammar.
* In a parse tree
— Inner nodes represent non-terminal symbols of the
grammar.
— Leave nodes represent terminal symbols of the
grammar.
+ Parse trees are generated by the parser component
of a compiler.
» Need to look at an example

Example Parse Tree

Given the grammar: gives: Expr
Expr ::= “(C Expr <)~ C Expr)

1 Expr “&&” Expr

I Expr “]1” expr Expr & Expr

1 “17 Expr

1 Lit . /N
Lit ::= var | “true’ | “false’. C Expr) ! Expr
Var ::= [a-z][A-Z0-9]+ . /‘\ '

Expr || Expr Var

Parsing this string: ' ‘ id=found

lookin true) && !found
« 9 11)) var true

id=looking

Abstract Syntax Trees

« Parse trees waste a fair amount of space for
representation of terminal symbols and productions.
In practice tools use abstract syntax trees.

Abstract syntax trees (ASTSs) are built by applying
more abstract operators (reflected in inner nodes)
and omitting lexical and structuring nodes that have
no additional meaning.

« Compilers post-process parse trees into ASTs

ASTs are the fundamental data structure of IDEs

Abstract Syntax Tree Example

Expr
T AndE
C Bor) K
///////W\\\\\\ OrExpr NotExpr
Expr && Expr ////\\\
(Expr) 1 Expr varRef
. VarRef true id=Found
///T\\\ ' id=looking
Expr || Expr Var=
\ ‘ found
Var= true
looking

Document Object Model

« A standard of the World-Wide-Web Consortium
« Standardises ASTs of XML documents

« Standardizes the programming interface to
manipulate and traverse these ASTs

« DOM trees can be created by any DOM-compliant
XML parser

¢ Given the prevalence of XML, DOM is extensively
used in software development environments (and
application servers)

Abstract Syntax Graphs

« Problem with ASTs: They do not support static semantic
checks, re-factoring and browsing operations, e.g:
— Have all used variables been declared
— Have all Classes used been imported
— Are the types used in expressions / assignments compatible?
— Navigate to the declaration of method call / variable reference / type
« Abstract Syntax Graphs have additional edges that reflect
semantic relationships, e.g. declare/use
« These edges are maintained during static semantic checks
« Static semantic checks might build upon previously
established ones
« They are used in re-factoring operations (e.g. renaming a
class).

Abstract Syntax Graph Example

boolean looking, found;

if (looking && !found) {.}

Block
VarDecl VarDecl 1fstmt
type=boolean Type=boolean
l l AndExpr Block
VarName VarName
id=looking id=found
A OrExpr NotExpr
v
VvarRef
id=looking
77777777777777777777777777777777 varRef
id=found

Persistence of ASGs

¢ In SDE research in the 1990s a lot of emphasis on
how to store ASTs and ASGs persistently in different
forms of databases.

« Today a developer’s workstation has sufficient
memory to hold ASGs, even of very large projects in
main memory.

« Moreover, CPUs are much faster than they were a
decade ago.

« Thus persistence is achieved by storage of artifacts
in the file system.

Persistence of ASGs

Block
VarbDecl VarDecl 1fstmt
type=boolean Type=boolean
In AndExpr Block
VarName VarName
memory Pl a
|dflagk|ng |d7foundOrExpr NotExpr
VvarRef
id=found
(]
%
<
@©
o
boolean looking, found;
On

file system if (looking && !found) {.}

Key Points

« Program editors in IDEs
are effectively incremental
compilers

« They work on abstract
syntax trees or graphs as
transient representations

i+ These are persisted by un-

parsing into the file system

References

¢ A. Aho, R. Sethi and J. Uliman: Compilers. Addison
Wesley. 1977

« M. Nagl (ed): Building Tightly integrated development
environments. LNCS 1170. Springer Verlag. pp 32-
44. http://dx.doi.org/10.1007/BFb0035684. 1996

¢ V. Apparao et al. Document Object Model. W3C

Recommendation. http://www.w3.0rg/DOM/DOMTR.
1998

