Developing Eclipse Plug-ins?

Wolfgang Emmerich
Professor of Distributed Computing
University College London

" http:/sse.cs.ucl.ac.uk

* Based on M. Pawlowski et al: Fundamentals of Eclipse
Plug-in and RCP Development. EclipseCon 2007.

Learning Objectives

Understand how to write new software development
tools and integrate them into the Eclipse platform

Understand the Eclipse extension mechanisms
¢ Know how to specify an OSGi manifest
Be able to develop, test and deploy a plug-in.

Any Eclipse product is composed of plug-ins

Eclipse SDK ¢ Aplug-inis the
fundamental building
-] block of an Eclipse
or product
¢ Plug-ins build on top of
o and use other plug-ins

To extend Eclipse, you
must write plug-ins

« To write a rich client
application, you must
write plug-ins

A Fundamental Building Block

* Anplug-inis a Java Archive (JAR)

s
Rescurzes
3 « A plug-in is self-contained
— houses the code and resources
that it needs to run
Mardeas
™
« A plug-in is self-describing
Coe 1010 — who itis and what it contributes to

the world
— what it requires from the world

A Tale of Two Manifest Files

W

@ ,

MANIFEST.MF pluginxml

+ D

* Version « Extension Points
* Name

* Code Location + Extensions

* Dependencies

* Exporis

A Mechanism for Extensibility
« Extensibility in Eclipse is achieved via loose coupling
« Plug-in A exposes an extension point (the electric outlet)

¢ Plug-in B extends plug-in A by providing an extension (the
plug) that fits into plug-in A’s outlet

¢ Plug-in A knows nothing about plug-in B

If the Extension Fits...

« So many extension points...

« Each extension point is unique

« Each extension point declares a contract

« The extension point provider accepts only extensions that
abide to the terms of its contract

A Declarative Approach

Extension Point Extension

+ XML Schema
4 * XML Ma)
+ Name

« Extension points and extensions are declared in the plugin.xml file

« The runtime is able to wire extensions to extension points and form an
extension registry using XML markup alone

Extensibility in Pictures

Query the registry for registered
compliant extensions

Present extensions based on
markup

Load classes only when the
extension is needed

Example of Extensibility

| S Preferences iG] %)

P 0 Development

PO —
 sawaters

P

[ot e marviest e pree 9 lmrnteg

Resars Cetatn | | Aowny

Plug-ins may contribute
preference pages

All preference pages are
assembled and categorized
in the Preferences dialog

How is the Preferences
dialog created?

How and when is a
particular preference page
created?

Extension Point

The Electric Outlet and the Plug

org achpse ul

P —p——

Tip of the Iceberg

« Plug-ins are connected without loading any of their code

« Code is loaded only when it is needed

« The lightweight declarative and lazy approach scales well

« Aninstalled plug-in is not necessarily an active plug-in

A Society of Plug-ins

« An Eclipse product is the sum of

Eclipse SDK its constituent plug-ins
peerar Plugin C
b ¢ Plug-ins are discovered upon
- Eclipse startup
J Plugin: A
- ¢ Plug-ins do not know how to play
Bepix R J and interact with each other on
- Plogin: £ their own

An Ordered Society of Plug-ins

« The Eclipse runtime manages all
Eclipse SDK installed plug-ins and brings order
and collaboration to their society

PlugHin: A Plug-in: €
r < « A classpath for each plug-in is
ot - dynamically constructed based on
J - the dependencies declared in its
Pgin: 0 MANIFEST.MF file
v « Every plug-in gets its own class
L loader
Plug-in: E
et}
| ; -

Seamless Integration of Components

Component Legend

B eoe

From Genesis to Deployment

Create the plug +in project Clean-up the manifest
1 '
o Editthe manifest & writ - Configure he bulld
s the Java code content
1 1
J Test & debug the plug 4n - Export o plug -in
1
Extornalize the stings.

Plug-in Creation

= The New Plug-in Project creation
wizard generates a project
complete with manifest files and,
optionally, source code

= The wizard also provides
templates for popular extension
points such as action sets, views,
preference pages

= Templates save a lot of time and
allow you to create and run a plug-
inin a few minutes

Life in the Workspace

[2 Package Explorer £7 - - =0
4 LS « The internal structure of a plug-in
= 5 org.ecipse.browser [dev.ecipse.org] project in the workspace mirrors
-5 src that of a deployed plug-in

@@\ JRE System Library [IBM JK 1.4.2]
& Plug+n Dependendes

@& branding
? g t‘:s « Two notable differences:
@ & META-INF =" The code is in source folders
®- G schema B@” The plug-in project contains
-G solutions extra development metadata
[.dasspath 1.1 (ASCIl +kv) that are not part of the
[project 1.1 (ascu 4kv) deployed plug-in

(&} buid.properties 1.3 (ASCII kv)

[& plugin.properties 1.2 (ASCII 4kv)

1% plugin.xml 1.2 (ASCIT 4kv)
splash.bmp 1.1 (Binary)

Editing the Plug-in

Crp—

© Overview

¢ The plug-in manifest editor
is the central place to
manage your plug-in

« It provides hot links to
— test and debug plug-ins
— launch relevant wizards

- - — quick navigation between
i - source code and the manifest
files

Testing the Plug-in

Target Platform Workspace Runtime Workbench
FYRS.

eiom 50K B

-3 | - -

Configure the Build Content
Binary Build
Select the folders and fils to
incude in the binary build: . The plug—in project contains
OB dasspath development-time metadata that
OB project should not be part of the
@[] @& META-INF .
[]& bn deployed plug-in.
#-[V] & branding
[(@b buid.properties
#-[V] & data
#-[]& icons . : i
g propertes On the Bmlq page of the plug in
[7] 4 plugin.xml manifest editor, you check the list
® gschem of files and folders that should be
* solutions
) sl b packaged
#[]& src
21

Exporting the Plug-in

| Stapert e
| Deployatie phay-ins and fragments -Jf
e i -
Awnietin NG en oS Mragrenty:
—— e
vt 4
worg et "

¢ The Plug-in Export wizard
packages a plug-in into a
deployable format

¢ Plug-ins can be exported en
masse

¢ Plug-ins can be exported as
an archive or as a directory
structure

Externalize the Strings

PDE provides an
Externalize Strings wizard
that extracts translatable
strings and stores them in a
properties file for multi-
language support.

« This allows the plug-in
manifest files to remain
intact, while the properties
files get translated

Clean up the Manifests

|8 Orgunice Marifests Wirwrd
Orpasice Mandits
rown o o ¢ e o

=
=]

s Pt b yes - o w20
s o s o ke Ft A T b W

e oo st

o o e b b ke T e g v e e
e vt g v

s v amt St (P s b 4 g S s

M et i (P ey b 8 g g s o)

D L Ty p——,

et o put 1 s 5 1 B8 gt
meee nand s $om 00 phg s prperies e

* The Organize Manifests

¢ As the plug-in evolves, it
may accumulate stale data

wizard that inspects your
code and manifests and
removes or updates stale
data

References

Key Points

Eclipse products are
composed of plug-ins
Plug-ins use and provide
extension mechanisms
Plug-ins make
contributions to all parts of
the Ul

each other through OSGi

Plug-ins are insulated from

« M. Pawlowski et al: Fundamentals of Eclipse Plug-in

and RCP Development. EclipseCon 2007.
http://eclipsezilla.eclipsecon.org/php/attachment.php?bugid=3645

