
1

The Eclipse Platform

Wolfgang Emmerich
Professor of Distributed Computing

University College London

http://sse.cs.ucl.ac.uk

2

Learning Objectives

• Many might know Eclipse as a Java interactive

development environment

• The aim of this lecture is to review the Eclipse

platform on which the Java IDE (and many others)

are built with respect to:

– Its component model

– The project management support

– The user interface support

• To give you insights into a very well designed and

complex software system

3

Review: The ECMA reference model



2

4

Overview of the Eclipse Platform

Platform

Java Development Tools (JDT)

Plug-in Development Environment (PDE)

UI

Core

Workbench

JFace

SWT

Workspace

Equinox Runtime

1.53MLoC

0.27MLoC

1.09MLoC

5

Bundles / Plug-ins

• Eclipse vision is to flexibly customise and evolve the

Eclipse platform through plug-ins.

• Plug-ins are structured bundles of code and/or data

that contribute functionality to the system. Plug-ins

can define extension points, well-defined places

where other plug-ins can add functionality.

• Eclipse has moved to adopting OSGi to manage the

versions and configurations of plug-ins, control their

deployment and avoid interference between them.

• Implemented in Eclipse Platform Equinox Runtime.

• Therefore every Eclipse plug-in is an OSGi bundle.

6

Plug-in deployment with OSGi

• Java class loading is too inflexible for realizing a

powerful plug-in mechanism. (why?)

• OSGi and its implementation in Equinox overcome

this:



3

7

Project Management in Eclipse Workspaces

• Eclipse manages one workspace (at a time)

• Workspace is mapped to a single file system
directory

• A workspace contains multiple projects

• Projects are mapped to subdirectories of the
workspace directory

• A project contains a number of artifacts (that may be
arranged in a hierarchical way themselves)

• Projects are of one or several natures

• A nature controls which tools, perspectives and
views are available to artifacts of the project.

8

Change management in Eclipse Workspaces

• The same resource may be used by multiple different

plug-ins, e.g. Java source is used by program editor,

incremental compiler and debugger.

• Workspace provides for plug-ins to track changes to

resources.

• E.g. the incremental java compiler can register an

interest in a Java file and it will get notified when the

file is changed.

• Notification contains a report of differences in the

form of a resource delta

9

Build management in Eclipse Workspaces

• Platform contains an incremental project builder

framework

• Provides build plug-ins with a resource tree delta

• Resource tree delta captures resource differences

since last build

• Build plug-in (e.g. a Java compiler) can then

incrementally rebuild the affected dependent

resources (e.g. Java class files)

• As a result Eclipse projects have an up-to-date

executable available almost all the time.



4

10

User Interface Management in Eclipse

• Integrated Software Development Environments are
demanding from a user interface point of view

• Different plug-ins should all have same look-and-feel.

• The Eclipse platform provides

– SWT - Standard Widget Toolkit that provides low-level GUI
programming abstractions on top of native operating
system GUI libraries.

– JFace - a GUI programming framework build on SWT with
abstractions needed in IDEs

– Workbench - The UI personality of the Eclipse platform.
Provides abstractions for editors, views and perspectives

• Neither Java’s AWT nor Swing are used in Eclipse

11

Eclipse Standard Widget Toolkit

• In user interface toolkit design: trade-off between
portability and speed.

• Extreme ends of the spectrum:

– Java Swing

– Windows win32 library

• SWT achieves good compromise

– Provides standard API for widgets needed in advanced
GUIs

– Has different implementations based on native OS GUIs

– Provides consistent look-and-feel with all other applications
on the OS

– Insulates remainder of the platform from OS dependencies

12

Eclipse JFaces

• Provides:

– Image and font registries

– Dialogue framework

– Preference framework

– Wizard framework

– Progress reporting for long running operations

– Action mechanism

– Viewer framework

• Implemented solely using SWT

• SWT can still be used directly (e.g. by GEF)



5

13

Eclipse Workbench

• Manages editors, views and perspectives

• Main Eclipse window contains one perspective at a

time and users can switch between them.

• Perspective contains a selection of editors and

views.

• Workbench handles menu bar to which editors may

contribute commands.

• Workbench handles status of each of these (can be

maximized, minimized)

• Workbench persists and reloads visualization status.

14

Key Points

• Integrated Development
Environments are very complex
software systems

• Reuse of common platform
infrastructure with UI, process
support and run-time support

• Eclipse platform arguably the
most sophisticated

• Basis of not just the JDE but a
large number of commercial
development environments
available from IBM, Oracle.

• Availability of Platform lowers
barrier to entry. Large number
of IDE vendors are SMEs.

15

References

• E. Clayberg and D. Rubel. Eclipse: Building

Commercial-Quality Plug-ins. Pearson. 2006

• http://www.eclipse.org/articles/Whitepaper-Platform-

3.1/eclipse-platform-whitepaper.pdf

• http://www.osgi.org/osgi_technology


