
1

Build Management

Wolfgang Emmerich
Professor of Distributed Computing

University College London

http://sse.cs.ucl.ac.uk

2

Context

Requirements

Analysis

Design

Implementation

Test

Inception Elaboration Construction Transition

I1 I2 In In+1 In+2 ImPreliminary
Iterations

3

Learning Objectives

• To understand the rationales for using build

management tools

• To know the principles of using build management

tools

• To appreciate the need for continuous builds

• To be able to set up an external build process for a

Java project

2

4

Motivation

• Often development artifacts are derived from others, e.g.
– HTML API documentation from Java source

– Java bytecode from Java source

– DLL libraries from object code

– Executable from object code and DLL libraries

– Integration test report from test cases and executable

• Derivation can be performed by IDE

• May be more desirable to have this done outside the IDE if
– Result of the build is too large to be manageable by one IDE

– Derivation takes very long (e.g. deriving the integration test report from
from a large number of test cases and the executable code)

– Derivation needs to be repeated for different target platforms (e.g.
package software for different operating systems)

– Derivation should be continuous without human intervention, e.g.
whenever new version is checked into trunk configuration

5

Requirements for Build Management Tools

• Build management tools fully automate the derivation of
possibly complex artifacts from source artifacts.

• Requirements
– Define a configuration language to specify concisely how the derivation

is to be done

• Individual steps

• Identification of dependencies between artifacts

– Interpreter for the language that executes the build

– Build incrementally so that only those artifacts that have been affected
by a change are derived again

– Support clean-up by getting rid of all intermediary derived artifacts

– Integration with

• Program Editor

• Configuration management system (to support continuous builds)

6

General build management tool architecture

Build

configuration

Filesystem

Build

tool

3

7

Build configuration language

• Rule or template-based language

• Interpreted language (build tool contains interpreter)

• Allow us to define

– artifact types (based on patterns of file names, e.g.

extensions)

– derivation tasks to express how input artifacts are

transformed into an output artifact and where are they

going to be stored

– Dependencies

– Build options

8

Overview of Build Management Tools

All these tools are open source and freely available

• Make, gmake, nmake - the oldest build management

tools. Today used mainly in OS development and

under Windows

• Ant - built by Apache Software Foundation. Very

popular with Java development projects

• Maven - More powerful project management and

reporting features than ant

• CruiseControl - continuous build management. Use

in conjunction with ant or maven

9

Example Language: Ant build files

• XML language

• Core concepts:
– Define properties (e.g. directory names)

– Paths (e.g. class paths)

– Targets with dependencies

– Tasks that are carried out for each target

• Projects can extend the ant build language and define explicit
tasks

• Implementations of these need to be provided in a jar file that
is dynamically loaded by the ant processor

• Well integrated into Eclipse IDE
– IDE can launch ant builds

– IDE can generate ant build files so that builds can be performed
outside IDE

4

10

Example Ant build file
<project basedir="." default="build" name="SimpleMetricsPlugin">
 <property name="ECLIPSE" value="/Applications/eclipse-ee"/>

 <path id="Plug-in Dependencies.libraryclasspath">
 <pathelement location="${ECLIPSE}/plugins/org.eclipse.jar"/>
 <pathelement location="${ECLIPSE}/plugins/org.eclipse.swt.jar"/> …
 </path>

 <path id="SimpleMetricsPlugin.classpath">
 <pathelement location="bin"/>
 <path refid="Plug-in Dependencies.libraryclasspath"/>
 </path>

 <target name="clean">
 <delete dir="bin"/>
 </target>

 <target name="init">
 <mkdir dir="bin"/>
 <copy includeemptydirs="false" todir="bin">
 <fileset dir="src" excludes="**/*.launch, **/*.java"/>
 </copy>
 </target>

11

Example ant build file (cont’d)

 <target depends="build-project" name="build">

 <target depends="init" name="build-project">

 <echo message="${ant.project.name}: ${ant.file}"/>

 <javac destdir="bin">

 <src path="src"/>

 <classpath refid="SimpleMetricsPlugin.classpath"/>

 </javac>

 </target>

 <!-- and so on -->

</project>

12

Continuous integration

• Agile development projects test a

lot and often in order to detect

defects early

• Unit tests are executed locally in

the workspace of the developer,

but integration tests need to be

executed against a fully integrated

configuration

• Aim of continuous integration is to

build a fully integrated executable

whenever a new item is checked

to the trunk so that this can be

tested automatically.

5

13

Continuous integration tools

• Continuous integration tools are plugged into SCM

tools

• Configure SCM tool to listen to commits of particular

configurations (typically the trunk)

• Whenever commit is executed an (incremental) build

of that configuration is launched using a build

management tool

• Once the build is complete continuous integration

tools trigger integration tests

14

Automated integration testing

• A Smoke test suite consists of a small set of
representative integration tests that can determine
whether the build worked and was deployed into the
test environment

• If smoke test fails the changes that caused the failure
are discarded so that an unbroken build is available

• Once smoke test succeeds a regression test suite
can be started to identify newly introduced defects

• An integration test suite tests that newly delivered
features are working in the integrated configuration

• We will discuss this in detail in a separate lecture

15

Key Points

• Build management tools

support the derivation of

complex artifacts from

multiple inputs

• Need to be usable outside

the IDE to be called by

continuous integration

servers

6

16

References

• S. Feldman. Make - a program for maintaining

computer programs. Software Practice & Experience

9(4):255-265. 1979

• J. Tilly and E. Burke. Ant: The definitive guide.

O’Reilly Media. 2002

• M. Fowler. Continuous Integration. Thoughtworks.

2006. www.martinfowler.com/articles/continuousIntegration.html

• B. Boehm: Software Engineering Economics.

Prentice Hall. 1981

