
1© Wolf gang Emmerich, 1997

Wolfgang Emmerich
Mark Levene

C340 Concurrency:
Modelling Processes

2© Wolf gang Emmerich, 1997

Processes and Threads

n Execution of a program is a process
n Concurrent programs consist of multiple

processes
n Threads are lightweight processes
n Both threads and processes can be

modelled in the same way
n We use finite state machines for that

3© Wolf gang Emmerich, 1997

Labelled Transition Systems

n Special form of finite state machines
n Used to model states of concurrent

programs and transitions between them
n LTS:=(S,T,A,δ ,c) where

• S (a finite set of states)
• T ⊆ S×S (a finite set of transitions)
• A (an alphabet of atomic actions)
• δ: T→ A (a transition labelling)
• c∈S (the current state)

4© Wolf gang Emmerich, 1997

1 2 3 4 5

n States

0

0 Current State

Transitions

Graphic LTS Notation

think talk scratch

talk think

scratch

scratch

abc Labels

5© Wolf gang Emmerich, 1997

LTS Semantics

n All actions that are annotations of
transitions starting from the current state
are enabled

n If process engages in enabled action
target of transition becomes current state

n In this way LTS determines all possible
traces of process

Demo

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/LTSA/LTSA.html

6© Wolf gang Emmerich, 1997

Finite State Processes (FSP)

n LTS become unmanageable for large
number of states and transitions

n Process algebras determine LTSs in a
more concise way

n Finite State Processes (FSP): machine
readable notation for a process algebra

n For each FSP model an equivalent LTS
can be constructed automatically

7© Wolf gang Emmerich, 1997

FSP Intro: Action Prefix

n Let x be an action and P a process. The
action prefix(x->P) is process that
initially engages in action x and then
behaves in the same way as process P

n Used to model atomic actions
n Actions have lower case identifiers, states

have upper case identifiers
n Example: ONESHOT=(once->STOP).
n Equivalent LTS:

0 1

once

8© Wolf gang Emmerich, 1997

FSP Intro: Recursion

n Let P be a process. Then P may be used in
action prefixes in a recursive way.

n Used to model repetitive behaviour
n Example: SWITCH=OFF.

OFF =(on->ON).
ON =(off->OFF).

n Equivalent LTS:

n Note: Processes are equivalent to states

0 1

on

off

9© Wolf gang Emmerich, 1997

FSP Intro: Local Processes

n It is not necessary for all states/processes
to be globally visible.

n Restricting states/processes by use of ‘ ,’
n Example:
SWITCH=OFF,
OFF=(on->ON),
ON=(off->OFF).

n OFF and ON are not visible outside SWITCH

n Equivalent to:
SWITCH=(on->off->SWITCH).

10© Wolf gang Emmerich, 1997

n (x->P|y->Q) describes a choice that
engages either in x or y. After x it contin-
ues with P, after y it continues with Q

n Example: DRINKS=(
 red->tea->DRINKS

 | blue->coffee->DRINKS
).

n Equivalent LTS:

FSP Intro: Choice

0 1
red

blue

2
tea

coffee

11© Wolf gang Emmerich, 1997

FSP Intro: Indexes

n A range type is a finite and scalar type:
n Example: range T=0..3
n If T is a range type then x[i:T] is the

declaration of an action index and P[i:T] is
declares an indexed process.

n A process index variable is valid within
the process, an indexed action is valid
within the scope of the choice.

12© Wolf gang Emmerich, 1997

FSP Intro: Index Example

const N =1
range T =0..N
range R =0..2*N
SUM =(in[a:T][b:T]->OUT[a+b],
OUT[s:R]=(out[s]->SUM).

n Equivalent LTS:

0 1
in.0.0

in.0.1

2
out.0

out.1

3

in.1.0

in.1.1

out.2

13© Wolf gang Emmerich, 1997

FSP Intro: Guarded Actions

n The guarded action when B x->P means
that when the guard B is true action x is
enabled and the process proceeds as P.

n Example:
COUNT(N=3) =COUNT[0],
COUNT[i:0..N]=(when(i<N) inc->COUNT[i+1]
 |when(i>0) dec->COUNT[i-1]
).

n Equivalent LTS:

0 1
inc

dec
2

inc

dec
3

inc

dec

14© Wolf gang Emmerich, 1997

Summary

n Formal Definition of LTS
n Algebraic notation in FSP
n Equivalence between LTS and FSP
n FSP and LTS concepts introduced so far

are sufficient for sequential programs
n Next session: FSP constructs for

modelling concurrent programs
n Solve Exercises 1 and 2 of tutorial sheet

