Patterils

UML Extension Mechanisms

By Oscar Kozlowski

Presentation Outline ‘

« What is UML

« How does UML help

« How is UML limited

« Introducing the UML Extension Mechanisms:
« Stereotypes
« Constraints
« Tagged Values

« Example usage

« Conclusions

What is UML?

« Unified Modelling Language

« Standard language for modelling system blueprints
« Software and non-software systems
« Graphical notation to define the objects
« Textual notation to fully define relationships

« Object-oriented and component based methodologies
are fully integrated

« Data encapsulation
« Reusability
« Extensibility




ol’ Ideology of UML

« UML is not tied to any specific development
methodology or lifecycle

« Designed to incorporate current best software
engineering practises but not force them

« Designed to integrate with CASE tools

« Ultimately a communication tool

ol’ How does UML help?

« UML helps visualise and document models of
systems and processes in a manner that meets the
requirements specification

« Helps the stakeholders visualise the product and the
options available to them

« UML helps to visualise the important aspects of a
system while abstracting the remainder away

« Allows developers to quickly assemble products from
existing components and operations

« Helps explore the problem domain to assist risk
management

UML Example

e

MOTOR
VEHICLE [

TRUCK MANUAL AUTOMATIC




Limitations ‘

e

‘ °
« UML focuses on defining notation for the majority of

users’ modelling needs, but it cannot express every
aspect of every model across every problem domain

« UML cannot express non-semantic attributes of a
model effectively

« UML is a communication tool so user tailoring of the
language that improves this communication is vital

« This tailoring must be done in a controlled manner

Solution

e

« These limitations are overcome with three defined
extension mechanisms that enable further information
about the system to be communicated

« Stereotypes
« Constraints
« Tagged Values
« Powerful as semantically user defined
« Controllable as syntactically specification defined

« Used to define problem domain specific or
implementation language specific extended information

Stereotypes

e

« A stereotype represents a variation of an existing
model element with the same form (e.g. attributes or
relationships) but with a different intent

« By default, stereotypes are depicted as keywords
surrounded by guillemot characters « keyword »

« Until UML 1.4 (September 2001) was ratified, each
diagram element could only have one stereotype. This
has been lifted but not all CASE tools have caught up

 There are some pre-defined stereotypes in UML such
as « use » and « extends »




e

Stereotypes Example

<<Context>~
Message

<<interface ==
MessageStatus

o
=<instantiate>»
-

s -
s

Factory New

Sent Acknowledged

Graphical Stereotypes

==actar=>
Manager

Cashier

Customer %

« Stereotypes can also be depicted graphically

« This can come at the expense of attributes and
operations unless a graphical / textual hybrid is used

« Symbols used must be familiar and self explanatory

Going overboard

<<business domain>>

Customer

<<unique id>> # customerNumber: int
- homeAddress: Address

# customerNumber: int <<unique (d>>
- homeAddress: Address

<<search>> + findAllinstances{(): Vector

<<search>> + findForlD(customerNumber): Vector
<<search>> + findForOrder(order): Vector
<<getter>> + gelTotalBusiness(sinceDate): Currency
+ scheduleShipment(forDate): Shipment

- name: String - nam
<<constructor>> + Customer(): Customer C + Customer(): Customer

+ findAllnstances(): Vector

+ findForlD(customerNumber): Vector

+ findForOrder(order): Vector

+ getTotalBusiness(sinceDate): Currency
+ scheduleShipment(forDate): Shipment

« List stereotypes after the attribute
« Don't indicate assumed stereotypes

« Prefer self explanatory naming schemes over stereotypes




Constraints ‘

‘ °
« Constraints specify some condition or rule about the
modeling element that must be maintained as true

« Constraints has semantic impact

* There are some pre-defined constraints in UML

« Any constraint attached to a stereotype applies to
every model element that has that stereotype

« Constraints are depicted after the model element /
stereotype as text within curly braces { >0 }

Constraints Example

Shape ‘

origin : Paint=(0,0y

width : int {=0}
height - int {=0}
draw(y : Graphics)
getfreal) - int
| Square | Circle
\ raduis : int {= width/2}
-

\ -

-
-
{width = height)

Tagged Values

« A Tagged Value is a name-value pair denoting a
property of a model element

« Tagged values also have semantic impact

« Not equivalent to class attribute as does not apply to
an instance of the modeled object, but to the model
element itself

« Used mainly as metadata or to specify properties
relevant to the build environment

« Tagged values are depicted after the model element /
stereotype as text within curly braces { author = Oscar}




l’ Tagged Values Example

=<library-=
Server opengl.dil
{processars = 3} {version = 3.2}

l’ Conclusion

« UML modeling is all about communication

* Use UML extension mechanisms to convey specific
additional structural and semantic information

« Be aware of not overdoing the use of UML extension
mechanisms just for the sake of it




