
1

Testing and Inspections
(3C05/D22)

Unit 11: Testing and Inspection

• Objectives
– To introduce software testing and to develop its role within the

software development process.
– To introduce the use of formal inspections of design and code as a

means of reducing errors in software development.

What is Testing?

• software testing is the process of seeking errors
• this process is active - if we find no errors after performing

a test we cannot passively assume that no errors exist
• we must eliminate all assumptions
• the goal is a product with "zero defects" !

2

Questions

• why should we test
– because the cost of not testing is much greater than the cost of

testing
– economics is both the limiting factor & the driving force

• who should do the testing
– testing requires a rigorously objective view

• when should we test
– not just program code, find errors as near source as possible,

testing at each stage in the lifecycle

testing is directly linked to quality improvement!

When Should We Test?

• requirements

• design

• construction

• operation & maintenance

• determine verification approach

• determine adequacy of requirements

• generate functional test data

• determine consistency of design with

requirements

• determine adequacy of design

• generate structural and functional test data

• determine consistency with design

• determine adequacy of implementation

• generate structural and functional test data

• apply test data

• reverify, commensurate with the level of

development

Requirements Stage

• test requirements documents by disciplined inspection and
review

• developing scenarios of expected system use (aka use
cases)

• preparation of test plan which should include:
– specification
– description of test procedures
– test milestones
– test schedule
– test data reduction
– evaluation criteria

3

Design Stage

• test design products by analysis, simulation, walkthroughs
and inspection

• generate test data for functions
• generate test cases based on structure of system

Construction Stage

• actual execution of code with test data
• code walkthrough and inspection
• static analysis
• dynamic analysis
• construction of test drivers, harnesses and stubs

Control and management of
test process is critical. All test
sets, test results and test
reports should be catalogued
and stored.

important

Operation and Maintenance Stage

• Modifications require retesting
– this is termed regression testing

• Changes at a given level will necessitate retesting at all
levels below it.

• Beware! This is where the money goes.

4

Methods

• There are two basic methods for organising testing
processes:
– bottom-up testing
– top-down testing

Testing is repetitive
and lends itself to
automation and tool
support.

The Myth of Exhaustive Testing

• Exhaustive testing is the only dynamic analysis technique
which will guarantee validity.
– Unfortunately it is not practical!

• The key problem for testing is how to derive an appropriate
test data set (aka test set)

Approaches

• Two basic approaches:
– black box or "functional" analysis
– white box or "structural" analysis

5

Functional Testing

• boundary value analysis (stress testing)
– Partition the input data, select data inside and at the boundary of

each partition.

• design-based functional testing
– Construct functional hierarchy, identify for each function at each

level extremal, non-extremal and special value test data. Identify
test data which will generate extremal, non-extremal and special
output values.

• cause-effect graphing
– Identify characteristic input stimuli (causes). Identify characteristic

output classes (effects). Identify dependencies using specification.
Present as directed graph, choose test cases to test dependencies.
Can be partially automated.

• exhaustive testing (where applicable)

Structural Testing

• coverage-based testing
– Represent program as control-flow graph. Identify paths. Choose

data to maximise paths executed under test conditions. Paths not
always finite. Some paths infeasible. Coverage metrics can be
applied. Can be partially automated.

• complexity-based testing
– Measure cyclomatic complexity. Determine paths actually executed

by program running on test data set - actual complexity. Attempt to
devise test set which will drive actual complexity closer to
cyclomatic complexity.

Test Data Analysis

• " the goodness of the test data set"
• statistical analysis and error seeding

– Seed known errors into code so that their placement is statistically
similar to that of actual errors.

• mutation analysis
– It is assumed that a set of test data that can uncover all simple

faults in a program is also capable of detecting more complex faults.
In mutation analysis a large number of simple faults, called
mutations, are introduced in a program one at a time. The resulting
changed versions of the test program are called mutants. Test data
is then be constructed to cause these mutants to fail. The
effectiveness of the test data set is measured by the percentage of
mutants killed.

6

Static Analysis

• flow analysis
– Construct data flow graph. Trace behaviour of program variables.

• symbolic execution
– Instead of executing with actual data values, the variable names that hold

input values are used as input values. All branches are taken and tree
constructed which can be used to identify control paths and hence test
sets.

• instrumentation
– eg Insertion of counters or turnstiles in code.

Methods can be combined

Inspections

• formal inspection of system development products is a very
effective means of reducing errors in software development

• we will be looking at "Fagan Inspections" the most well
known set of inspection techniques

• goal - remove errors as near source as possible hence
reducing costs of rework.

Prerequisite

• Describe the software development process in terms of
operations, and define exit criteria which must be satisfied
for completion of each operation.

• Inspections at each exit point. Key inspections to be
carried out:
– I0 Design Architecture
– I1 Design Complete
– IT1 Test Plan
– IT2 Test Cases
– I2 Code

7

People

• the people involved
– moderator
– designer
– coder/implementor
– tester

• four people constitute a reasonable size for an inspection
team

Process

• overview (whole team)
• preparation (individual)
• inspection (whole team)
• rework
• follow-up

Steps

• steps in inspection
– reader paraphrases design, describing how it will be implemented
– questions raised during discourse, only pursued until error

recognised
– error noted (but not solution) and classified by severity
– written report of inspection prepared

• important to inspect modified products (reinspection to
avoid "bad fix" problem)

8

process
operations Design Code

objectives of
operation

rate of progress (loc/hr)

overview

preparation

inspection

rework

follow-up

500

100

130

20 (hrs/KNCSS)

-

not required

125

150

16 (hrs/KNCSS)

-

communication

education

find errors

resolve errors

ensure resolution
of errors

Rate of Progress

Scheduling

• Inspections should be scheduled with care
• The result of postponing inspection is usually lengthening

of the overall schedule and increased product cost!
• Error detection efficiency tends to dwindle after 2 hours
• Two sessions of 2 hours are acceptable in a day

Finding Errors

• finding errors is difficult...
– condition people to seek high occurrence, high cost error types
– take representative sample of code; obtain suitable quantity of

errors; analyse by type, origin, cause and salient indicative feature
– use this to prepare inspection specification to guide process

9

Feedback

• inspections provide detailed real-time feedback to
developers success is due to:
– management attitude
– conduct of trained moderator

• process control using inspection (identification of error
prone modules and distribution of error types)

under no circumstances
should inspections be
used for programmer
performance appraisal

leading to process reengineering

Walkthroughs

• inspections may be contrasted with walkthroughs
– formality
– regularity
– feedback
– feedforward
– self-improvement

a common misunderstanding

Inspection Overview

operation 1 I

Rework

Analysis

• fix process holes

• fix short term problems

• error feedback for
 learning to programmers

• special rework or rewrite
 recommendations • learning input for inspector & moderators

• what error types to look for

• better ways to find each error type

• detail error follow-up

• number of errors/inspection hr.

• number of LOC inspected/hr

• error prone modules
 - ranked

• error types distribution
 - ranked

• number of errors/KLOC
 compared to average

for special attention

operation 2

feedback feedforward

10

For Details

• Fagan, M.E. (1976); Design and Code Inspections to
Reduce Errors in Program Development; IBM Systems
Journal; 15, 3, pp 182-211.

• Fagan, M.E. (1986); Advances in Software Inspections
IEEE Transactions on Software Engineering, Vol SE12 No
7, p744, July 1986.

Key Points

• Testing is a key aspect of verification and is vital to ensure
software quality. Testing should be a concern throughout
the life-cycle and should be carefully planned and
managed. There are a range of techniques to help improve
the effectiveness of testing. Many of these are supported
by tools.

• Define exit criteria for development operations. Focus
objectives of inspection process. Identify which types of
errors to spend time looking for. Analyse inspection results
and use for process improvement.

